
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

Programming in Java

Course Web Page
(www.mkbhandari.com/mkwiki)

Packages and Interfaces

Outline

Introduction to Packages1

Access Protection2

Importing Packages3

Introduction to Interface4

Default Interface Method5

Using static Methods in an Interface6

A package (act as Container) is a collection of related java entities (such as classes,
interfaces, exceptions, errors and enums), a great way to achieve reusability, can be
considered as means to achieve data encapsulation.

Packages in Java provides a mechanism for partitioning the class name space into
more manageable chunks.

A Package is both a naming and a visibility control mechanism.

The advantages of packages are:
Removes naming collision: by prefixing the class name with a package name.

Categorize the classes and interfaces so that they can be easily maintained.

Packages are stored in a hierarchical manner and are explicitly imported into new
class definitions.

Provides access control: Besides public and private, Java has two access control modifiers-
protected and default (that are related to package).

Packages

Packages
Package in java can be categorized in two form, built-in package and user-defined
package.

Built-in packages: standard packages which are part of JRE or Java API. Some of the
commonly used built-in packages are:

Defining a Package
To create a package is quite easy: simply include a package statement as the first
statement in a Java source file.

Any classes declared within that file will belong to the specified package.

The package statement defines a name space in which classes are stored.

If you omit the package statement, the class names are put into the default package,
which has no name, and suitable for short, sample programs but inadequate for real
applications.

Most of the time, for real applications, you will define a package for your code, using
the general form:

package pkg; // for example, package MyPackage;

Defining a Package
package MyPackage; // creates a package called MyPackage;

Java uses file system directories to store packages.1

For example, the .class files for any classes you declare to be part of MyPackage must be
stored in a directory called MyPackage. Remember that case is significant, and the directory
name must match the package name exactly.

2

More than one file can include the same package statement. The package statement simply
specifies to which package the classes defined in a file belong. It does not exclude other
classes in other files from being part of that same package. Most real-world packages are
spread across many files.

3

You can create a hierarchy of packages. To do so, simply separate each package name from
the one above it by use of a period. The general form is:

4

package pkg1[.pkg2[.pkg3]];

Defining a Package
package MyPackage; // creates a package called MyPackage;

A package hierarchy must be reflected in the file system of your Java development system.
For example, a package declared as:

5

package java.awt.image; //needs to be stored in java/awt/image in a UNIX environment.

Be sure to choose your package names carefully. You cannot rename a package without
renaming the directory in which the classes are stored.

6

Package Example
// A simple package
package MyPack;
class Balance {

String name;
double bal;
Balance(String n, double b) {

name = n;
bal = b;

}
void show() {

if(bal < 0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}
class AccountBalance {

public static void main(String args[]) {
Balance current[] = new Balance[3];
current[0] = new Balance("K. J. Fielding", 123.23);
current[1] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);
for(int i=0; i<3; i++) { current[i].show(); }

}
}

How to compile Java Package program1

How to run Java Package program.2

Syntax: javac -d directory javafilename

//creates package MyPack in current directory (.)
and saves the generated .class files(Balance.class
and AccountBalance.class) in it. This step can be
performed manually as well.

Example: javac -d . AccountBalance.java

java MyPack.AccountBalance

OUTPUT

* 3 ways are there to locate/run Java Packages
program (other two are discussed in next slide)

K. J. Fielding: $123.23
Will Tell: $157.02
--> Tom Jackson: $-12.33

Finding Packages and CLASSPATH
How does the Java run-time system know where to look for packages that you create?

By default, the Java run-time system uses the current working directory as its starting
point. Thus, if your package is in a subdirectory of the current directory, it will be found.

1

You can specify a directory path or paths by setting the CLASSPATH environmental
variable. (in Unix/Linux systems)

2

You can use the -classpath option with java and javac to specify the path to your classes.3

export CLASSPATH=.:/home/UserName/Desktop/MyJavaPrograms;
// Assuming your packages are saved under Desktop/MyJavaPrograms;

java -classpath /home/UserName/Desktop/MyJavaPrograms/ MyPack.AccountBalance
// Assuming your packages are saved under Desktop/MyJavaPrograms;
// Save all .class files of your program(AccountBalance.java) in MyPack.

Already Discussed in previous slide

Access Protection
Packages act as containers for classes and other subordinate packages.

Subclasses in the same package1

Classes act as containers for data and code

The class is Java’s smallest unit of abstraction

Because of the interplay between classes and packages, Java addresses four
categories of visibility for class members:

Non-subclasses in the same package2

Subclasses in different package3

Classes that are neither in the same package nor subclasses4

Access Protection
The three access modifiers, private, public, and protected, provide a variety of ways to
produce the many levels of access required by these categories.

The following applies only to members of classes

[Source: (1)]

Access Protection
Anything declared public can be accessed from anywhere.

Anything declared private cannot be seen outside of its class.

When a member does not have an explicit access specification, it is visible to
subclasses as well as to other classes in the same package (default access).

If you want to allow an element to be seen outside your current package, but only to
classes that subclass your class directly, then declare that element protected.

Access Protection
A non-nested class has only two possible access levels

When a class is declared as public, it is accessible by any other code.

If a class has default access, then it can only be accessed by other code within its
same package.

When a class is public, it must be the only public class declared in the file, and the file
must have the same name as the class

default and public (others are abstract and
final)

An Access Example

This is file Protection.java:

package p1;

public class Protection {
int n = 1;
private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;

public Protection() {
System.out.println("base constructor");
System.out.println("n = " + n);
System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file Derived.java:

package p1;

class Derived extends Protection {

Derived() {
System.out.println("derived constructor");
System.out.println("n = " + n);

// private member in Protection class
// System.out.println("n_pri = "+ n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

// Shows all combinations of the access control modifiers.

// This example has two packages and five classes.

An Access Example

This is file SamePackage.java:

package p1;

class SamePackage {

SamePackage() {
Protection p = new Protection();
System.out.println("same package constructor");

System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);
}

}

This is test file for package P1, DemoP1.java:

// Demo package p1.

package p1;

// Instantiate the various classes in p1.
public class DemoP1 {

public static void main(String args[]) {

Protection ob1 = new Protection();

Derived ob2 = new Derived();

SamePackage ob3 = new SamePackage();
}

}

An Access Example
How to compile?

Compile all classes one by one in
sequence:

$ javac -d . Protection.java
$ javac -d . Derived.java
$ javac -d . SamePackage.java
$ javac -d . DemoP1.java

 OR

1

Compile all classes all together but in
sequence
$ javac -d . Protection.java Derived.java

SamePackage.java DemoP1.java

2

How to run?
$ java p1.DemoP1R

base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived constructor
n = 1
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
same package constructor
n = 1
n_pro = 3
n_pub = 4

OUTPUT

An Access Example

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {

Protection2() {
System.out.println("derived other package

 constructor");

// class or package only
// System.out.println("n = " + n);

// class only
// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file OtherPackage.java:

package p2;

class OtherPackage {

OtherPackage() {
p1.Protection p = new p1.Protection();
System.out.println("other package constructor");

// class or package only
// System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only
// System.out.println("n_pro = " + p.n_pro);

 System.out.println("n_pub = " + p.n_pub);
}

}

An Access Example

This is test file for package P2, DemoP2.java:

// Demo package p2.

package p2;

// Instantiate the various classes in p2.
public class DemoP2 {

public static void main(String args[]) {

Protection2 ob1 = new Protection2();

OtherPackage ob2 = new OtherPackage();
}

}

OUTPUT

base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived other package constructor
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
other package constructor
n_pub = 4

Importing Packages
Java includes the import statement to bring certain classes, or entire packages, into
visibility.

Once imported, a class can be referred to directly, using only its name. (Since classes
within packages must be fully qualified with their package name or names, it could become tedious to
type in the long dot-separated package path name for every class you want to use.)

The import statement saves a lot of typing. (If you are going to refer to a few dozen classes in
your application)

In a Java source file, import statements occur immediately following the
packagestatement (if it exists) and before any class definitions.

The general form of the import statement:
import pkg1[.pkg2].(classname|*);

For example:
import java.util.Date; //Explicit Date class
import java.io.*; //Entire io package

Here pkg1 is the top-level package, and pkg2 is the
subordinate package inside the outer package
separated by a dot (.).

1

There is no practical limit on the depth of a
package hierarchy, except that imposed by the file
system.

2

Importing Packages
All of the standard Java classes included with Java are stored in a package called java.

The basic language functions are stored in a package inside of the java package called
java.lang (implicitly imported by the compiler for all programs).

This is equivalent to the following line being at the top of all of your programs:
import java.lang.*;

The import statement is optional. Any place you use a class name, you can use its fully
qualified name, which includes its full package hierarchy. For example:

import java.util.*;

class MyDate extends Date {
}
// without the import statement looks like this:
class MyDate extends java.util.Date { // fully-qualified name
}

Importing Packages
/* when a package is imported, only those items within the
package declared as public will be available to non-
subclasses in the importing code. */

package MyPack;

/* Now, the Balance class, its constructor, and its show()
method are public. This means that they can be used by non-
subclass code outside their package */

public class Balance {
String name;
double bal;
public Balance(String n, double b) {

name = n;
bal = b;

}
public void show() {

if(bal < 0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}

/* Here TestBalance imports MyPack and is then able to
make use of the Balance class: */

import MyPack.Balance; //import MyPack.*;

class TestBalance {
public static void main(String args[]) {

/* Because Balance is public, you may use
Balance class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show();
}

}

Remove the public specifier from the
Balance class and then try compiling
TestBalance.

A

Interfaces are syntactically similar to classes, but they lack instance variables, and, as
a general rule, their methods are declared without any body(abstract methods).

The interface in Java is a mechanism to achieve abstraction. There can be only
abstract methods in the Java interface, not method body. It is used to achieve
abstraction and multiple inheritance in Java.

It cannot be instantiated just like the abstract class.

Once it is defined, any number of classes can implement an interface. Also, one class
can implement any number of interfaces.(A class can only extend from a single class,
but a class can implement multiple interfaces)

Interfaces are designed to support dynamic method resolution at run time.

Interface

All methods declared in an interface are implicitly public and abstract.
All variables declared in an interface are implicitly public, static and final.

Why use interfaces?

Interface

[Source: (3)]

Loose coupling means reducing the
dependencies of a class that uses the
different classes directly.

1

Tight coupling means classes and objects
are dependent on one another.

2

An interface is defined much like a class. This is a simplified general form of an
interface:

Defining an Interface

access interface name {

return-type method-name1(parameter-list);
return-type method-name2(parameter-list);

type final-varname1 = value;
type final-varname2 = value;

//...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

An interface is declared by using the
interface keyword.

1

The access can be either default or public.2

A class that implements an interface must
implement all the methods declared in the
interface.

4

It provides total abstraction; means all the
methods in an interface are declared with
the empty body (Abstract methods), and all
the fields are public, static and final by
default.

3

Here is an example of an interface definition. It declares a simple interface that
contains one method called callback() that takes a single integer parameter.

Defining an Interface

interface Callback {

void callback(int param);

}

Once an interface has been defined, one or more classes can implement that
interface.

Implementing Interfaces

To implement an interface, include the implements clause in a class definition, and
then create the methods required by the interface.

The general form of a class that includes the implements clause looks like this:
class classname [extends superclass] [implements interface [, interface...]] {

// class-body
}

If a class implements more than one interface, the interfaces are separated with a
comma (,) .

If a class implements two interfaces that declare the same method, then the same
method will be used by clients of either interface.

The methods that implement an interface must be declared public.

Implementing Interfaces

Also, the type signature of the implementing method must match exactly the type
signature specified in the interface definition.

A sample class implementing the Callback interface shown earlier:
class Client implements Callback {

// Implement Callback's interface
public void callback(int p) {

System.out.println("callback called with " + p);
}

}

Notice: that callback() is declared using the public access modifier.

REMEMBER: When you implement an interface method, it must be declared as public.

Implementing Interfaces

// Finally to test interface

public class InterfaceTest {

public static void main(String args[]) {
// Can’t instantiate an interface directly
// Callback c1 = new Callback();
// c1.callback(21);

Client c2 = new Client();

c2.callback(42);

}
}

What will be the output ?

It is both permissible and common for classes that implement interfaces to define
additional members of their own.

Implementing Interfaces

For example, the following version of Client implements callback() and adds the
method nonIfaceMeth():

class Client implements Callback {

// Implement Callback's interface
public void callback(int p) {

System.out.println("callback called with " + p);
}

void nonIfaceMeth() {
System.out.println("Classes that implement interfaces " +

"may also define other members, too.");
}

}

You can declare variables as object references that use an interface rather than a
class type.

Accessing Implementations Through Interface References

Any instance of any class that implements the declared interface can be referred to
by such a variable.

When you call a method through one of these references, the correct version will be
called based on the actual instance of the interface being referred to. This is one of
the key features of interfaces.

The method to be executed is looked up dynamically at run time, allowing classes to
be created later than the code which calls methods on them.

The calling code can dispatch through an interface without having to know anything
about the “callee.” (This process is similar to using a superclass reference to access a
subclass object)

The following example calls the callback() method via an interface reference variable:

Accessing Implementations Through Interface References

/* How an interface reference variable
can access an implementation object */

class TestIface {
public static void main(String args[]) {

Callback c = new Client();

c.callback(42);
}

}

OUTPUT
callback called with 42

Variable c is declared to be of the interface type
Callback, yet it was assigned an instance of
Client.

1

Although c can be used to access the callback()
method, it cannot access any other members of
the Client class.

2

An interface reference variable has knowledge
only of the methods declared by its interface
declaration.

3

Thus, c could not be used to access
nonIfaceMeth() since it is defined by Client but
not Callback.

4

The following example demonstrate the polymorphic power of interface reference.

Accessing Implementations Through Interface References

// Another implementation of Callback.

class AnotherClient implements Callback {
// Implement Callback's interface
public void callback(int p) {

System.out.println("Another version of callback");
System.out.println("p squared is " + (p*p));

}
}

class TestIface2 {
public static void main(String args[]) {

Callback c = new Client();
AnotherClient ob = new AnotherClient();
c.callback(42);
c = ob; // c now refers to AnotherClient object
c.callback(42);

}
}

OUTPUT

callback called with 42
Another version of callback
p squared is 1764

The version of callback() that is called is
determined by the type of object that c refers to
at run time.

If a class includes an interface but does not fully implement the methods required by
that interface, then that class must be declared as abstract.

Partial Implementations

abstract class Incomplete implements Callback {
int a, b;

void show() {
System.out.println(a + " " + b);

}

// no implementation for callback()
}

Here, the class Incomplete does not implement callback() and must be declared as
abstract.

Any class that inherits Incomplete must implement callback() or be declared abstract
itself.

An interface can be declared a member of a class or another interface. Such an
interface is called a member interface or a nested interface.

Nested Interfaces

A nested interface can be declared as public, private, or protected. This differs from a
top-level interface, which must either be declared as public or use the default access
level.

Thus, outside of the class or interface in which a nested interface is declared, its name
must be fully qualified.

When a nested interface is used outside of its enclosing scope, it must be qualified by
the name of the class or interface of which it is a member.

Nested Interfaces
// This class contains a member interface.
class A {

// this is a nested interface
public interface NestedIF {

boolean isNotNegative(int x);
}

}
// B implements the nested interface.
class B implements A.NestedIF {

public boolean isNotNegative(int x) {
return x < 0 ? false: true;

}
}
class NestedIFDemo {

public static void main(String args[]) {
// use a nested interface reference
A.NestedIF nif = new B();
if(nif.isNotNegative(10))

System.out.println("10 is not negative");
if(nif.isNotNegative(-12))

System.out.println("this won't be displayed");
}

}

Class A defines a member interface called
NestedIF and that it is declared public.

1

Class B implements the nested interface by
specifying:

2

Inside the main() method, an A.NestedIF
reference called nif is created, and it is assigned
a reference to a B object.

3

Because B implements A.NestedIF, this is legal.4

implements A.NestedIF

Applying Interfaces
/* Multiple implementations of an interface through an interface reference variable */

interface MyInterface{

void print(String msg);
}

class MyClass1 implements MyInterface{
public void print(String msg){

System.out.println(msg + “ : ” +msg.length());
}

}

class MyClass2 implements MyInterface{
public void print(String msg){

System.out.println(msg.length() + “ : ” +msg);
}

}

Public class InterfaceApplyTest {

public static void main(String args[]) {

MyClass1 mc1 = new MyClass1();
MyClass2 mc2 = new MyClass2();

MyInterface mi; /*create an interface
reference variable */

mi = mc1;
mi.print(“Hello World”); // MyClass1 print()

mi = mc2;
mi.print(“Hello World”); // MyClass2 print()

}
}

Accessing multiple implementations of an interface through an interface reference variable is the
most powerful way that Java achieves run-time polymorphism.

Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply
declaring an interface that contains variables that are initialized to the desired values.

When you include that interface in a class (that is, when you “implement” the
interface), all of those variable names will be in scope as constants.

This is similar to using a header file in C/C++ to create a large number of #defined
constants or const declarations.

If an interface contains no methods, then any class that includes such an interface
doesn’t actually implement anything. It is as if that class were importing the constant
fields into the class name space as final variables.

Variables in Interfaces
// Example to implement an automated “decision maker”
import java.util.Random;
interface SharedConstants {

int NO = 0;
int YES = 1;
int MAYBE = 2;
int LATER = 3;
int SOON = 4;
int NEVER = 5;

}
class Question implements SharedConstants {

Random rand = new Random();
int ask() {

int prob = (int) (100 * rand.nextDouble());
if (prob < 30)

return NO; // 30%
else if (prob < 60)

return YES; // 30%
else if (prob < 75)

return LATER; //15%
else if (prob < 98)

return SOON; // 13%
else

return NEVER; // 2%

}
}
class AskMe implements SharedConstants {

static void answer(int result) {
switch(result) {

case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");
break;

case MAYBE:
System.out.println("Maybe");
break;

case LATER:
System.out.println("Later");
break;

case SOON:
System.out.println("Soon");
break;

case NEVER:
System.out.println("Never");
break;

Variables in Interfaces
}

}

public static void main(String args[]) {

Question q = new Question();

answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());

}
}

OUTPUT

Later
Soon
No
Yes

Note that the results are different each time it is run.

This program makes use of one of Java’s
standard classes: Random.

1

Random contains several methods that allow
you to obtain random numbers in the form
required by your program.

2

the method nextDouble() returns random
numbers in the range 0.0 to 1.0.

3

Question and AskMe, both implement the
SharedConstants interface where NO, YES,
MAYBE, SOON, LATER, and NEVER are defined.

4

Extending Interfaces
One interface can inherit another by use of the keyword extends. The syntax is the
same as for inheriting classes.

When a class implements an interface that inherits another interface, it must provide
implementations for all methods required by the interface inheritance chain.

A class extends another class, an interface extends another interface, but a class
implements an interface.

[Source: (3)]

Extending Interfaces
// One interface can extend another.
interface A {

void meth1();
void meth2();

}
// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {

void meth3();
}

// This class must implement all of A and B
class MyClass implements B {

public void meth1() {
System.out.println("Implement meth1().");

}
public void meth2() {

System.out.println("Implement meth2().");
}
public void meth3() {

System.out.println("Implement meth3().");
}

}

class IFExtend {
public static void main(String arg[]) {

MyClass ob = new MyClass();

ob.meth1();
ob.meth2();
ob.meth3();

}
}

What will happen if you remove the
implementation for meth1() in MyClass ?

Q

Extending Interfaces
// One interface can extend another.
interface A {

void meth1();
void meth2();

}
// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {

void meth3();
}

// This class must implement all of A and B
class MyClass implements B {

public void meth1() {
System.out.println("Implement meth1().");

}
public void meth2() {

System.out.println("Implement meth2().");
}
public void meth3() {

System.out.println("Implement meth3().");
}

}

class IFExtend {
public static void main(String arg[]) {

MyClass ob = new MyClass();

ob.meth1();
ob.meth2();
ob.meth3();

}
}

What will happen if you remove the
implementation for meth1() in MyClass ?

Q

This will cause a compile-time error. Any class
that implements an interface must implement all
methods required by that interface, including
any that are inherited from other interfaces.

A

Default Interface Methods
Prior to JDK 8, an interface could not define any implementation whatsoever.

All the previous versions of Java, the methods specified by an interface were abstract,
containing no body.

The release of JDK 8 has changed this by adding a new capability to interface called
the default method.

A default method lets you define a default implementation for an interface method.

Its primary motivation was to provide a means by which interfaces could be expanded without
breaking existing code.

An interface still cannot have instance variables. The defining difference between an interface
and a class is that a class can maintain state information, but an interface cannot. Furthermore,
it is still not possible to create an instance of an interface by itself. It must be implemented by a
class.
Interfaces that you create will still be used primarily to specify what and not how. However, the
inclusion of the default method gives you added flexibility.

Default Interface Methods
//Default interface Method Demo
public interface MyIF {

int getNumber();

// This is a default method. Notice that it provides
// a default implementation.
default String getString() {

return "Default String";
}

}

// Implement MyIF.
class MyIFImp implements MyIF {

public int getNumber() {
return 100;

}

// getString() can be allowed to default.
}

// Use the default method.
class DefaultMethodDemo {

public static void main(String args[]) {

MyIFImp obj = new MyIFImp();

// Can call getNumber(), because it is explicitly
// implemented by MyIFImp:
System.out.println(obj.getNumber());

// Can also call getString(), because of default
// implementation:
System.out.println(obj.getString());

}
}

OUTPUT

100
Default String

Default Interface Methods

class MyIFImp2 implements MyIF {

// Here, implementations for both getNumber() and getString() are provided.

public int getNumber() {
return 100;

}
public String getString() {

return "This is a different string.";
}

}

OUTPUT

100
This is a different string.

It is both possible and common for an implementing class to define its own
implementation of a default method.

Multiple Inheritance Issues
Java does not support the multiple inheritance of classes, because of ambiguity.

Default methods do offer a bit of what one would normally associate with the
concept of multiple inheritance.

For example, you might have a class that implements two interfaces. If each of these
interfaces provides default methods, then some behavior is inherited from both.

Thus, to a limited extent, default methods do support multiple inheritance of
behavior. But in such a situation, it is possible that a name conflict will occur.

Observe the code fragments shown in the next slide to understand the scenarios
when a name conflict situation may occur.

Multiple Inheritance Issues
//Both interfaces define default methods

interface Alpha {
default void reset() {

System.out.println(“Alpha’s reset”);
}

}

interface Beta{
default void reset() {

System.out.println(“Beta’s reset”);
}

}

class MyClass implements Alpha, Beta {
public void reset() {

System.out.println(“MyClass’ reset”);
}

}

Both Alpha and Beta provide a method called
reset() for which both declare a default
implementation.

1

Is the version by Alpha or the version by Beta
used by MyClass?

2

Multiple Inheritance Issues
//One interfaces extends another, both define default methods.

interface Alpha {
default void reset() {

System.out.println(“Alpha’s reset”);
}

}

interface Beta extends Alpha {
default void reset() {

System.out.println(“Beta’s reset”);
// Alpha.super.reset();

}
}

class MyClass implements Beta{
public void reset() {

System.out.println(“MyClass’ reset”);
}

}

Which version of the default method is used?1

what if MyClass provides its own implementation
of the method?

2

Alpha.super.reset();
if Beta wants to refer to Alpha’s default reset()Q

Multiple Inheritance Issues
To handle previous two cases and other similar types of situations, Java defines a set
of rules that resolves such conflicts.

In all cases, a class implementation takes priority over an interface default implementation.
Ex: if MyClass provides an override of the reset() default method, MyClass’ version is used.
Ex: if MyClass implements both Alpha and Beta, both defaults are overridden by MyClass’
implementation.

1

If a class implements two interfaces that both have the same default method, but the class
does not override that method, then an error will result.
Ex: if MyClass implements both Alpha and Beta, but does not override reset(), then an error will
occur.

2

If one interface inherits another, with both defining a common default method, the
inheriting interface’s version of the method takes precedence.
Ex: If Beta extends Alpha, then Beta’s version of reset() will be used.

3

It is possible to explicitly refer to a default implementation in an inherited interface by
using a new form of super. Its general form is shown here:

4

InterfaceName.super.methodName()
//Alpha.super.reset();

static Methods in an Interface

// An example of a static method in an interface
public interface MyIF {

int getNumber();

default String getString() {
return "Default String";

}

// This is a static interface method.
static int getDefaultNumber() {

return 0;
}

}

Like static methods in a class, a static method defined by an interface can be called
independently of any object.

Here is the general form:
InterfaceName.staticMethodName

The getDefaultNumber() method can be called,
as shown here:

int defNum = MyIF.getDefaultNumber();

1

No implementation or instance of MyIF is
required to call getDefaultNumber() because it
is static.

2

static interface methods are not inherited by
either an implementing class or a subinterface.

3

References

R Reference for this topic

Book- Java: The Complete Reference, Tenth Edition: Herbert Schildt1

Web- https://www.tutorialspoint.com/java/index.htm2

Web- https://www.javatpoint.com/inheritance-in-java3

Web- https://docs.oracle.com/javase/tutorial/java/IandI/index.html4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

