
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

Programming in Java

Course Web Page
(www.mkbhandari.com/mkwiki)

Inheritance

Outline

1

Using super
Inheritance Basics

2

Creating a Multilevel Hierarchy3

When Constructors are Executed4

Method Overriding5

Dynamic Method Dispatch6

Using Abstract Classes7

Using Final with Inheritance8

The Object Class9

Inheritance

One of the important concept/feature of Object Oriented Programming.

It allows/facilitates Reusability through the Hierarchical Classification.
Superclass 1

Subclass2

Defines the general aspects of an object (attributes common to a set of objects) .

Specialized version of a Superclass.
Inherits the Superclass (common traits/properties).
Adds things that are unique to it (its own, unique elements).
Also known as derived class or child class.

Also known as base class or parent class.

Example of Inheritance

It can be used to create any number of more specific
subclasses.

Types of Inheritance in Java

X

Types of Inheritance [3]

Types of Inheritance in Java
X

Types of Inheritance [2]

Inheritance Basics

The extends keyword is used to inherit a class.

The general form of a class declaration that inherits a Superclass is shown here:

class subclass-name extends superclass-name {

// body of class

}

#Note:
superclass is also a completely independent,
stand-alone class, can be used by itself.

You can only specify one superclass for
any subclass that you create.

1

Multiple inheritance is not supported in Java.

You can create a hierarchy of
inheritance in which a subclass
becomes a superclass of another
subclass.

2

However, no class can be a superclass
of itself.

3

Inheritance Basics – A simple example of Inheritance

// Create a superclass.
class A {

int i, j;
void showij() {

System.out.println("i and j: " + i + " " + j);
}

}

// Create a subclass by extending class A.
class B extends A {

int k;
void showk() {

System.out.println("k: " + k);
}
void sum() {

System.out.println("i+j+k: " + (i+j+k));
}

}

i
j
showij()

class A obj.

k
showk()
sum()

class B obj.

i
j
showij()

Inheritance Basics – A simple example of Inheritance

class SimpleInheritance {
public static void main(String args []) {

A superOb = new A();
B subOb = new B();

// The superclass may be used by itself.
superOb.i = 10;
superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();
System.out.println();

/* The subclass has access to all public members of its
superclass. */
subOb.i = 7;
subOb.j = 8;
subOb.k = 9;
System.out.println("Contents of subOb: ");
subOb.showij();
subOb.showk();
System.out.println();
System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

}
}

// Create a superclass.
class A {

int i, j;
void showij() {

System.out.println("i and j: " + i + " " + j);
}

}

// Create a subclass by extending class A.
class B extends A {

int k;
void showk() {

System.out.println("k: " + k);
}
void sum() {

System.out.println("i+j+k: " + (i+j+k));
}

}

Inheritance Basics – A simple example of Inheritance

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
K: 9

Sum of i, j and k in subOb:
i+j+k: 24

I = 10
J = 20
showij()

I = 7
J = 8
showij()

superOb

K = 9
showk()
sum()

subOb

OUTPUT
class SimpleInheritance {

public static void main(String args []) {
A superOb = new A();
B subOb = new B();

// The superclass may be used by itself.
superOb.i = 10;
superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();
System.out.println();

/* The subclass has access to all public members of its
superclass. */
subOb.i = 7;
subOb.j = 8;
subOb.k = 9;
System.out.println("Contents of subOb: ");
subOb.showij();
subOb.showk();
System.out.println();
System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

}
}

Member Access and Inheritance

// Create a superclass.
class A {

int i; // default access
private int j; // private to A
void setij(int x, int y) {

i = x;
j = y;

}
}

// A's j is not accessible here.
class B extends A {

int total;
void sum() {

total = i + j; // ERROR, j is not accessible here
}

}

class Access {
public static void main(String args[]) {

B subOb = new B();
subOb.setij(10, 12);
subOb.sum();
System.out.println("Total is " + subOb.total);

}
}

Although a subclass includes all of the
members of its superclass, it cannot access
those members of the superclass that have
been declared as private.

1

In a class hierarchy, private members
remain private to their class.

2

#REMEMBER A class member that has been
declared as private will remain private to its
class. It is not accessible by any code
outside its class, including subclasses.

3

A More Practical Example

// This program uses inheritance to extend Box.
class Box {

double width;
double height;
double depth;

// construct clone of an object
Box(Box ob) {

width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}

// compute and return volume
double volume() {

return width * height * depth;
}

}

A More Practical Example

// Here, Box is extended to include weight.

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double wt) {
width = w;
height = h;
depth = d;
weight = wt;

}
}

class DemoBoxWeight {
public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " +

mybox1.weight);

System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " +

mybox2.weight);
}

}

A More Practical Example

 OUTPUT

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

class DemoBoxWeight {
public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " +

mybox1.weight);

System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " +

mybox2.weight);
}

}

A More Practical Example

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any
number of more specific subclasses.

Each subclass can precisely tailor its own classification.

// Here, Box is extended to include color.

class ColorBox extends Box {

int color; // color of box

ColorBox(double w, double h, double d, int c) {
width = w;
height = h;
depth = d;
color = c;

}
}

A Superclass Variable Can Reference a Subclass Object

class RefDemo {
public static void main(String args[]) {

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37); // weightbox is a reference to BoxWeight objects
Box plainbox = new Box(); // plainbox is a reference to Box objects.
double vol;
vol = weightbox.volume();
System.out.println("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " + weightbox.weight);

// assign BoxWeight reference to Box reference, since BoxWeight is a subclass of Box
plainbox = weightbox;
vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox does not define a weight member.
1. when a reference to a subclass object is assigned to a superclass reference variable, you will have access

 only to those parts of the object defined by the superclass.
2. Because the superclass has no knowledge of what a subclass adds to it */

// System.out.println("Weight of plainbox is " + plainbox.weight);
}

}

Using Super

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double wt) {

width = w;
height = h;
depth = d;
weight = wt;

}
}

So far inheritance were not implemented as efficiently or as robustly as they could
have been. For example:

Using Super

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double wt) {

width = w;
height = h;
depth = d;
weight = wt;

}
}

So far inheritance were not implemented as efficiently or as robustly as they could
have been. For example:

The constructor for BoxWeight explicitly initializes
the width, height, and depth fields of Box.

1

Two issues of concern:2

Duplicate code in its superclass (inefficient)
But it implies that a subclass must be granted access
to these members.

However, there will be times when you will want to
create a superclass that keeps the details of its
implementation to itself (that is, that keeps its data
members private).

3

In this case, there would be no way for a subclass to
directly access or initialize these variables on its own.

4

Using Super

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double wt) {

width = w;
height = h;
depth = d;
weight = wt;

}
}

So far inheritance were not implemented as efficiently or as robustly as they could
have been. For example:

Since encapsulation is a primary attribute of OOP, it
is not surprising that Java provides a solution to this
problem.

5

Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

6

super has two general forms:7

Can be used to Call the superclass’ constructor

Can be used to access a member of the superclass

Using Super to Call Superclass Constructors

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {

double weight; // weight of box

// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double wt) {

super(w, h, d); // call superclass constructor
weight = wt;

}
}

A subclass can call a constructor defined by its superclass by use of the following
form of super:

super(arg-list);
Here, arg-list specifies any arguments
needed by the constructor in the
superclass.

0

Thus, super() always refers to the
superclass immediately above the
calling class.

2

This is true even in a multileveled
hierarchy.

3

Also, super() must always be the first
statement executed inside a subclass
constructor.

4

When a subclass calls super(), it is
calling the constructor of its immediate
superclass.

1

Using Super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following
form of super:

super(arg-list);
Here, BoxWeight() calls super() with the
arguments w, h, and d. This causes the
Box constructor to be called, which
initializes width, height, and depth using
these values.

5

BoxWeight no longer initializes these
values itself. It only needs to initialize
the value unique to it: weight.

6

This leaves Box free to make these
values private if desired.

7

Since constructors can be overloaded,
super() can be called using any form
defined by the superclass.

8

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {

double weight; // weight of box

// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double wt) {

super(w, h, d); // call superclass constructor
weight = wt;

}
}

Using Super to Call Superclass Constructors

// A complete implementation of BoxWeight.
class Box {

private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob) {

width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}

// compute and return volume
double volume() {

return width * height * depth;
}

}

Using Super to Call Superclass Constructors

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) {

super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified.
BoxWeight(double w, double h, double d, double wt) {

super(w, h, d); // call superclass constructor
weight = wt;

}

// default constructor
BoxWeight() {

super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double wt) {

super(len);
weight = wt;

}
}

Using Super to Call Superclass Constructors

class DemoSuper {
public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1); // clone

double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);
System.out.println();

Using Super to Call Superclass Constructors

vol = mybox3.volume();
System.out.println("Volume of mybox3 is " + vol);
System.out.println("Weight of mybox3 is " + mybox3.weight);
System.out.println();

vol = myclone.volume();
System.out.println("Volume of myclone is " + vol);
System.out.println("Weight of myclone is " + myclone.weight);
System.out.println();

vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);
System.out.println("Weight of mycube is " + mycube.weight);
System.out.println();

}
}

Using Super to Call Superclass Constructors

OUTPUT

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Using Super to Call Superclass Constructors

// construct clone of an object
BoxWeight(BoxWeight ob) {

super(ob);
weight = ob.weight;

}

Notice that super() is passed an object of type BoxWeight—not of type Box.

This still invokes the constructor Box(Box ob).

As mentioned earlier, a superclass variable can be used to reference any object derived from that
class.

Thus, we are able to pass a BoxWeight object to the Box constructor. Of course, Box only has
knowledge of its own members.

Using Super to access member of Superclass

The second form of super acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used.

This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of
a subclass hide members by the same name in the superclass.

Using Super to access member of Superclass

// Using super to overcome name hiding.
class A {

int i;
}

// Create a subclass by extending class A.
class B extends A {

int i; // this i hides the i in A
B(int a, int b) {

super.i = a; // i in A
i = b; // i in B

}
void show() {

System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}
}

class UseSuper {
public static void main(String args[]) {

B subOb = new B(1, 2);
subOb.show();

}
}

 OUTPUT

i in superclass: 1
i in subclass: 2

Using Super - Summary

[Source: (3)]

Creating a Multilevel Hierarchy

You can build hierarchies that contain as many layers of inheritance as you like.

As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.

For example, given three classes called A, B, and C, C can be a subclass of B, which is a
subclass of A.

When this type of situation occurs, each subclass inherits
all of the traits found in all of its superclasses.

In this case, C inherits all aspects of B and A.

NOTE: The class hierarchy, including A, B, and C, can be in
one file. In Java, all three classes can be placed into their
own files and compiled separately. In fact, using separate
files is the norm, not the exception, in creating class
hierarchies.

Creating a Multilevel Hierarchy

// Extend BoxWeight to include shipping costs.
// A complete implementation of BoxWeight.
class Box {

private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob) {

width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}

// compute and return volume
double volume() {

return width * height * depth;
}

}

Creating a Multilevel Hierarchy

// Add weight
class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) {

super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified.
BoxWeight(double w, double h, double d, double wt) {

super(w, h, d); // call superclass constructor
weight = wt;

}

// default constructor
BoxWeight() {

super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double wt) {

super(len);
weight = wt;

}
}

Creating a Multilevel Hierarchy

// Add shipping costs.
class Shipment extends BoxWeight {

double cost;
// construct clone of an object
Shipment(Shipment ob) {

super(ob);
cost = ob.cost;

}

// constructor when all parameters are specified
Shipment(double w, double h, double d, double wt, double c) {

super(w, h, d, wt); // call superclass constructor
cost = c;

}

// default constructor
Shipment() {

super();
cost = -1;

}

// constructor used when cube is created
Shipment(double len, double wt, double c) {

super(len, wt);
cost = c;

}
}

Creating a Multilevel Hierarchy

class DemoShipment {
public static void main(String args[]) {

Shipment shipment1 = new Shipment(10, 20, 15, 10, 3.41);
Shipment shipment2 = new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();
System.out.println("Volume of shipment1 is " + vol);
System.out.println("Weight of shipment1 is " + shipment1.weight);
System.out.println("Shipping cost: $" + shipment1.cost);
System.out.println();

vol = shipment2.volume();
System.out.println("Volume of shipment2 is " + vol);
System.out.println("Weight of shipment2 is "+ shipment2.weight);
System.out.println("Shipping cost: $" + shipment2.cost);

}
}

OUTPUT

Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

When Constructors are Executed?

When a class hierarchy is created, in what order are the constructors for the classes
that make up the hierarchy executed?

For example, given a subclass called B and a superclass called A, is A’s constructor
executed before B’s, or vice versa?

The answer is that in a class hierarchy, constructors complete their execution in order
of derivation, from superclass to subclass.

Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used.

If super() is not used, then the default or parameterless constructor of each
superclass will be executed.

When Constructors are Executed?

// Demonstrate when constructors are executed.
// Create a super class.
class A {

A() {
System.out.println("Inside A's constructor.");

}
}
// Create a subclass by extending class A.
class B extends A {

B() {
System.out.println("Inside B's constructor.");

}
}
// Create another subclass by extending B.
class C extends B {

C() {
System.out.println("Inside C's constructor.");

}
}

OUTPUT

Inside A's constructor
Inside B's constructor
Inside C's constructor

class CallingCons {
public static void main(String args[]) {

C c = new C();
}

}

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass, then the method in the subclass is said to
override the method in the superclass.

When an overridden method is called from within its subclass, it will always refer to
the version of that method defined by the subclass. The version of the method
defined by the superclass will be hidden.

Method Overriding

// Method overriding.
class A {

int i, j;
A(int a, int b) {

i = a;
j = b;

}
// display i and j
void show() {

System.out.println("i and j: " + i + " " + j);
}

}
class B extends A {

int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
// display k – this overrides show() in A
void show() {

System.out.println("k: " + k);
}

}

class Override {
public static void main(String args[]) {

B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B

}
}

This program displays the following output :

k: 3

When show() is invoked on an object of type
B, the version of show() defined within B
is used.

1

That is, the version of show() inside B
overrides the version declared in A.

2

How to access the superclass version of an
overridden method?

Q

Method Overriding

// To access Superclass version of show()

class B extends A {
int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
void show() {

super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}

This program displays the following output :

i and j: 1 2
k: 3

Here, super.show() calls the superclass
version of show().

1

What if names and the type signatures of
the two methods are non-identical?

Q

If you wish to access the superclass version of an overridden method, you can do so
by using super.

Method overriding occurs only when the
names and the type signatures of the two
methods are identical.

2

Method Overriding

// Methods with differing type signatures are overloaded – not overridden.
class A {

int i, j;
A(int a, int b) {

i = a; j = b;
}
// display i and j
void show() {

System.out.println("i and j: " + i + " " + j);
}

}
class B extends A {

int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
void show(String msg) { // overload show()

System.out.println(msg + k);
}

}

class Override {
public static void main(String args[]) {

B subOb = new B(1, 2, 3);
subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}

This program displays the following output :

This is k: 3
i and j: 1 2

The version of show() in B takes a string
parameter. This makes its type signature
different from the one in A, which takes no
parameters.

1

Therefore, no overriding (or name hiding) takes
place – so show() is overloaded here.

2

Method Overriding - Summary

[Source: (3)]

Method Overriding - Summary

[Source: (3)]

Method Overriding - Summary

[Source: (3)]

//Java Program to demonstrate the real scenario of Java Method Overriding
//where three classes are overriding the method of a parent class.
class Bank{

int getRateOfInterest(){
return 0;

}
}
class SBI extends Bank{

int getRateOfInterest(){
return 8;

}
}
class ICICI extends Bank{

int getRateOfInterest(){
return 7;

}
}
class AXIS extends Bank{

int getRateOfInterest(){
return 9;

}
}

//Test class to create objects and call the methods
class Test{

public static void main(String args[]){
SBI s=new SBI();
ICICI i=new ICICI();
AXIS a=new AXIS();
System.out.println("SBI Rate of Interest: “

+s.getRateOfInterest());
System.out.println("ICICI Rate of Interest: "

+i.getRateOfInterest());
System.out.println("AXIS Rate of Interest: "

+a.getRateOfInterest());
}

}

SBI Rate of Interest: 8
ICICI Rate of Interest: 7
AXIS Rate of Interest: 9

OUTPUT

Method Overriding vs Overloading

[Source: (3)]

Method Overriding vs Overloading

[Source: (3)]

//Method Overloading example
class OverloadingExample{

static int add(int a,int b){
return a+b;

}

static int add(int a,int b,int c){
return a+b+c;

}
}

//Method Overriding example
class Animal{

void eat(){
System.out.println("eating...");

}
}

class Dog extends Animal{

void eat(){
System.out.println("eating bread...");

}
}

Dynamic Method Dispatch

Method overriding forms the basis for one of Java’s most powerful concepts: dynamic
method dispatch.

Dynamic method dispatch is the mechanism by which a call to an overridden method
is resolved at run time, rather than compile time.

Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

As aready discussed, a superclass reference variable can refer to a subclass object.
Java uses this fact to resolve calls to overridden methods at run time.

When an overridden method is called through a superclass reference, Java
determines which version of that method to execute based upon the type of the
object being referred to at the time the call occurs.

Dynamic Method Dispatch

Thus, this determination is made at run time.

When different types of objects are referred to, different versions of an overridden
method will be called.

In other words, it is the type of the object being referred to (not the type of the reference
variable) that determines which version of an overridden method will be executed.

Therefore, if a superclass contains a method that is overridden by a subclass, then
when different types of objects are referred to through a superclass reference
variable, different versions of the method are executed.

Dynamic Method Dispatch

// Dynamic Method Dispatch
class A {

void callme() {
System.out.println("Inside A's callme method");

}
}

class B extends A {
// override callme()
void callme() {

System.out.println("Inside B's callme method");
}

}

class C extends A {
// override callme()
void callme() {

System.out.println("Inside C's callme method");
}

}

class Dispatch {
public static void main(String args[]) {

A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

r = c; // r refers to a C object
r.callme();// calls C's version of callme

}
}

Dynamic Method Dispatch

OUTPUT

Inside A's callme method
Inside B's callme method
Inside C's callme method

NOTE: the version of callme() executed is
determined by the type of object being referred
to at the time of the call.

class Dispatch {
public static void main(String args[]) {

A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

r = c; // r refers to a C object
r.callme();// calls C's version of callme

}
}

Why Overridden Methods?

The overridden methods allow Java to support run-time polymorphism.

Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods.

Overridden methods are another way that Java implements the “one interface,
multiple methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater
specialization.

Used correctly, the superclass provides all elements that a subclass can use directly.

It also defines those methods that the derived class must implement on its own.

Why Overridden Methods?

This allows the subclass the flexibility to define its own methods, yet still enforces a
consistent interface.

Thus, by combining inheritance with overridden methods, a superclass can define the
general form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that
object-oriented design brings to bear on code reuse and robustness.

The ability of existing code libraries to call methods on instances of new classes
without recompiling while maintaining a clean abstract interface is a profoundly
powerful tool.

Applying Method Overriding

// Using run-time polymorphism (a more practical example)
class Figure {

double dim1;
double dim2;
Figure(double a, double b) {

dim1 = a;
dim2 = b;

}
double area() {

System.out.println("Area for Figure is undefined.");
return 0;

}
}
class Rectangle extends Figure {

Rectangle(double a, double b) {
super(a, b);

}
double area() { // override area for rectangle

System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

Applying Method Overriding
class Triangle extends Figure {

Triangle(double a, double b) {
super(a, b);

}
double area() { // override area for right triangle

System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}
class FindAreas {

public static void main(String args[]) {
Figure f = new Figure(10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref;
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());
figref = f;
System.out.println("Area is " + figref.area());

}
}

Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Area is 40
Area for Figure is undefined.
Area is 0

Through the dual mechanisms of
inheritance and run-time polymorphism, it is
possible to define one consistent interface
that is used by several different, yet related,
types of objects.

1

In this case, if an object is derived from
Figure, then its area can be obtained by
calling area().

2

The interface to this operation is the same
no matter what type of figure is being used.

3

OUTPUT

Using Abstract Classess

Abstraction is a process of hiding the implementation details and showing only
functionality to the user. Abstraction lets you focus on what the object does instead
of how it does it.

It is used to achieve abstraction which is one of the pillar of Object Oriented
Programming(OOP).

A class which is declared as abstract is known as an abstract class. It can have
abstract and non-abstract methods. It needs to be extended and its method
implemented. It cannot be instantiated.

To declare a class abstract, use this general form :
abstract class class-name{

//body of class
}

Using Abstract Classess

To declare an abstract method, use this general form:

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier.

Thus, a subclass must override them—it cannot simply use the version defined in the
superclass.

These methods are sometimes referred to as subclasser responsibility because they
have no implementation specified in the superclass.

A method which is declared as abstract and does not have implementation is known
as an abstract method.

abstract type name(parameter-list); // no method body is present.

Using Abstract Classess

[Source: (3)]

Using Abstract Classess

// A Simple demonstration of abstract.
abstract class A {

abstract void callme();
// concrete methods are still allowed in abstract classes
void callmetoo() {

System.out.println("This is a concrete method.");
}

}
class B extends A {

void callme() { // must override*
System.out.println("B's implementation of callme.");

}
}
class AbstractDemo {

public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo();

}
}

Notice that no objects of class A are declared
in the program

1

class A implements a concrete method (non-
abstract) called callmetoo().

2

Abstract classes can include as much
implementation as they see fit.

3

Abstract classes can not be instantiated, but
can create object references, because Java’s
approach to run-time polymorphism is
implemented through the use of superclass
references.

4

* ohterwise Compile Time error will occur

Using Abstract Classess

// Improving th Figure class shown earlier
// Using abstract methods and classes
abstract class Figure{

double dim1;
double dim2;
Figure(double a, double b) {

dim1 = a;
dim2 = b;

}
// area() is now an abstract method
abstract double area();

}
class Rectangle extends Figure {

Rectangle(double a, double b) {
super(a, b);

}
// Must override area()*
double area() {

System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

class Triangle extends Figure {
Triangle(double a, double b) {

super(a, b);
}
// Must override area()*
double area() {

System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}
class AbstractAreas {

public static void main(String args[]) {
 // Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref; // this is OK, no object is created
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());

}
}

* ohterwise Compile Time error will occur

Using final with Inheritance

The keyword final has three uses:

Create the equivalent of a named constant (already discussed).1

Using final to prevent Overriding2

Using final to prevent Inheritance3

Can we declare a class as both abstract and final ?

To disallow a method from being overridden, specify final as a modifier at the start of its
declaration.

Methods declared as final cannot be overridden

To prevent a class from being inherited, precede the class declaration with final.

Declaring a class as final implicitly declares all of its methods as final, too.

Using final to Prevent Overridding

class A {

final void meth() {
System.out.println("This is a final method.");

}
}

class B extends A {

void meth() { // ERROR! Can't override*
System.out.println("Illegal!");

}
}

* Compile Time error will occur

Using final to Prevent Inheritance

final class A {
//...

}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A

//...
}

NOTE: A final class can not have abstract methods and
an abstract class can not be declared final.

The Object Class

There is one special class, Object, defined by Java.

All other classes are subclasses of Object. That is, Object is a superclass of all other
classes.

This means that a reference variable of type Object can refer to an object of any other
class.

Also, since arrays are implemented as classes, a variable of type Object can also refer
to any array.

Object defines some methods, which means that they are available in every object.

The Object Class

*

*

*

*

References

R Reference for this topic

Book- Java: The Complete Reference, Tenth Edition: Herbert Schildt1

Web- https://www.tutorialspoint.com/java/index.htm2

Web- https://www.javatpoint.com/inheritance-in-java3

Web- https://docs.oracle.com/javase/tutorial/java/IandI/index.html4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

