Java - Data Types, Variables,
and Arrays

The Primitive Types

* Java defines eight primitive types of data: byte, short, int, long, char,
float, double, and boolean.

* These can be put in four groups:

" |[ntegers This group includes byte, short, int, and long, which are for whole-
valued signed numbers.

» Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

" Characters This group includes char, which represents symbols in a character
set, like letters and numbers.

» Boolean This group includes boolean, which is a special type for representing
true/false values.

Integers

* Java defines four integer types: byte, short, int, and long.

* byte b, c;

* shorts;

* short t;

* int lightspeed;

* long days;

Name Width Range

long 64 -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807
int - 32 -2,147,483,648 to 2,147 483,647

short 16 32,768 10 32,767

byte | B =128 to 127

Floating-Point Types

* Floating-point numbers, also known as real numbers, are used when
evaluating expressions that require fractional precision.

* float hightemp, lowtemp;
* double pi, r, a;

* The type float specifies a single-precision value that uses 32 bits of storage.

* Double precision, as denoted by the double keyword, uses 64 bits to store
a value.

* When you need to maintain accuracy over many iterative calculations, or
are manipulating large-valued numbers, double is the best choice.

Name Width in Bits Approximate Range
double 64 4.9e-324 to 1.8e+308
float 32 1.4e-045 to 2.4e+038

Characters

* In Java, the data type used to store
characters is char.

* In C/C++, char is 8 bits wide. This is not the
case in Java.

 Java uses Unicode to represent characters.
Unicode defines a fully international
character set that can represent all of the
characters found in all human languages.

* |t is a unification of dozens of character sets,
such as Latin, Greek, Arabic, Cyrillic, Hebrew,
Katakana, Hangul, and many more. For this

purpose, it requires 16 bits.
* The range of a char is 0 to 65,536.

// char variables behave like integers.
class CharDemo2 {
public static void main(String args([]) {

char chi;

chl = 'X';
System.out.println("chl contains " + chil);

chl++; // increment chl
System.out .println("chl is now " + chl);

The output generated by this program is shown here:

chl contains X
chl is now Y

Booleans

 Java has a primitive
type, called boolean,
for logical values.

* |t can have only one
of two possible
values, true or false.

* This is the type
returned by all
relational operators.

S/ Demonstrate boolean values.
class BoolTest |
public static veoid main(String args[]) |
boolean b;

b = false;
System.out.printin("b ia " 4+ b);
b = true;

System.out .println("b is " + b});

// a boolean value can control the if statement

if{b) System.cut.println("This is executed.");

b = false;
if (k) System.out.println("This is not executed.");

J/ outcome of a relaticnal operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9});

The output generated by this program is shown here:

b is false

b is true

This iz executed.
10 = 9 is true

TaBLE 3-1

Character Escape
Sequences

Escape Sequence Description

‘ddd Octal character (ddd)

LXK ' Hexadecimal Unicode character (xxxx)
AY 1' Single quote

Ly | Double guote

N Backslash

\r Carriage return

\n | New line (also known as line feed)
N Form feed

\t Tab

\b Backspace

Variables

* The variable is the basic unit of storage in a Java program.
* Avariable is defined by the combination of an identifier, a type, and

an optional initializer.

* In addition, all variables have a scope, which defines their visibility,
and a lifetime.

* Declaring a Variable
* type identifier [= value]|, identifier [= value] ...] ;
* The type is one of Java’s atomic types, or the name of a class or

interface.

* The identifier is the name of the variable.

int a,

b ¥

int 4 = 3,

byte =z

double pi

char x

=

=r

22;

o b

L= 5

3.14159;
;

I/
/7
/Y
//
."II ,"I
.Illl ,"I

declares three ints, a, b, and c.
declares three more ints, initializing
d and £.

initializes =.

declares an approximation of pi.

the variable x has the value 'x'.

The Scope and Lifetime of Variables

. Ja\fa HHOWS Varlables tU be dECIarEd // Demonstrate lifetime of a wvariable.
within any block. class LifeTime |

? i 4 ubli tati id main(Stri rge [1)
* A block is begun with an opening B e et |
curly brace and ended by a closing
curly brace. A block defines a scope. for(x = 0; X < 3; x44) |
i " int vy = -1; // v is initialized each time block is entered
* A scope determines what objects System.out.println('y is: * + y); // this always prints -1
are visible to other parts of your y = 100;
program System.ocut.println("y is now: " + y);
' : cr }
* It also determines the lifetime of }
those objects.)
* Scopes can be nested. The output generated by this program is shown here:
* Variables are created when their y is: -1
scope is entered, and destroyed y is now: 100
when their scope is left. y is: -1
* The lifetime of a variable is confined 7 ;= ™" ™"
to its scope. S -

Type Conversion and Casting

* Java’s Automatic Conversions

* When one type of data is assigned to another type of variable, an
automatic type conversion will take place if the following two
conditions are met:

" The two types are compatible.
" The destination type is larger than the source type.

* When these two conditions are met, a widening conversion takes
place.

* There are no automatic conversions from the numeric types to char
or boolean.

caSting Incompatible // Demonstrate casts.

class Conversion {

Types public static void main(String args[]) {
byte b;
1 int i = 257;
* To create a conversion L T L TR
between two _ _ _
. . System.out.println{"\nConversion of int to byte."®);
incompatible types, b - (byve) i; L)
Svst " iz int {"i e d o+ "4) ;
you must use a cast. yErEeRE s A ’
. x System.ocut.println{"\nConversion of double tc int.");
* A cast is simply an i=- (nt) a; . L
R System.out.println{"d and i + d + + 1} ;
explicit type _ _
- . System.out.println("\nConversion of double to byte.");
conversion. It has this b = (byte) 4
general .r.‘orm: } System.out.println{"d and b + d + + b);

(target-type) value

This program generates the following output:

Conversion ¢f int to byte.
i and b 257 1

Conversion of double to int.
d and i 323.142 323

Conversion of double to byte.
d and b 323.142 &7

Arrays

* An array is a group of like-typed variables that are referred to by a
common name.

* Arrays of any type can be created and may have one or more
dimensions.

* A specific element in an array is accessed by its index.

* One-Dimensional Arrays

* A one-dimensional array is, essentially, a list of like-typed variables.
type var-name| |;

* The general form of new as it applies to one-dimensional arrays
appears as follows:

array-var = new type[sizel;

* Array Initialization

// Demonstrate a one-dimensional array.
class Array |
public static void main{(String args[l} {

. month;days[];‘ // An improved wversion of the previous program.
month_days = new int[12];
s o - ——— class AutoArray |
B - ! public static veoid main(sString argsif[l) {
month days[1] = 28;
MAnEN _anpa il = 31; int month_days([] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
month days[3] = 30; = 30, 31 };
month days[4] = 31; o 4
A d System.out.println("April has * month days[3 " days.");
month_days [5] = 30; | Y P ("Ap + _days[3] + ys.");
month days[6] = 31; }
month days([7] = 31;
month days[8] = 30;

month days[9] = 31;

month days[10] 30;

month_days [11] = 31;

System.out .println("April has " + month days[3] + " days.");

Multidimensional Arrays

* In Java, multidimensional arrays are actually arrays of arrays.
int twoD[][] = new int[4][5];

// Demonstrate a two-dimensional array.
class TwoDArray |
public static void main(sString args[]) {
int twoD[] [1= new int[4] [5]:;
int 1. J. K = 0Q;

For(i=0; iz4; i++)
for(j=0; Jj<s|; J++) |
twoD([i] [J] = k;
e+

}

for(i=0; 1<4; 1++) {
for{(j=0; Jj<5; J++)
Systeam.out . print (ewoD[4] [4] + " ") ;
Evstem.out .println () ;

¥
}
}

This program generates the following output:

012 3 4
5 7 8 8
10 11 312 13 14
15 1l 17 18 19

/[Manually allocate differing size second dimensions.
class TwoDAgain {

public static void main(String args(])
int twoD[][] = new int([4]1([]1;

}

This program generates the following output:

o W = o

twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];

int £; 3 k= 0:

for(i=0; i<4; i++)
for(j=0; j<i+l; j++) |
twoD[1] [J] = k;
k++;

}

for(i=0; i=<4; i++) {
for{j=0; Jj<i+l; J++)

Syatem.out .print (ewoD[i] [j] + "

System.out.printin() ;

)
)

=] i B
m

{

"y,

The array created b}r this program looks like this:

[o][e]

[1][e]

EV|EY

(2][0]

(][]

[2][2]

[3][e]

[s101]

(121

[1[]

// Demonstrate a three-dimensional array.
' class ThreeDMatrix |
J/ Initialize a two-dimensional array. | public static void main(string args[]) {

class Matrix {
public static void main(String args(]) | I 1:E :hr§EDi!f][] = DAoL LY ReL LS

double m[] [] = {

0*0, 1*0, 2+%0, 3*0 }, i . .
E 0%1, 1+1, 2%1, 3*1 i, Eozéﬁjﬂi;ﬁ;;*? :|
{ 0%2, 1+2, 2#%2, 3+%2 }, forzk;n;‘k25;+;++}
{ o%*3, 1%3, 2+%3, 3+3 } : threeD([i] [§]1[k] = 1 * § * k;
= |
int 1. 93 f for(i=0; i<3; i++) {
for(j=0; j<4; j++) {
for(i=0; i<4; i++) { for(k=0; ke5; k++)
for(j=0; J<4; J++) System.out.print (threeD([i] [j1[k] + " ");
System.out .print (m[i] [§1 + " "); System.out.println();
System.out .printlin(); | }
} : Syetem.out.printin() ;
} . }
} }
When you run this program, you will get the following output: ;)
This program generates the following output:
0.0 0.0 0.0 0.0
0.0 1.0 2.0 3.0 | 00000 00000O
0.0 2.0 4.0 6.0 | 00000 02468
0.0 3.0 6.0 9.0 - U 9t 04 8 12 16
0o0o0cCO 06 12 18 24
00000
01 234
0 246 8B
0 36 9 12

Alternative Array Declaration Syntax

* There is a second form that may be used to declare an array:
typel] var-name;

* For example, the following two declarations are equivalent:
int al[] = new int[3];
int[] a2 = new int[3];

* The following declarations are also equivalent:
char twod1[][] = new char[3][4];
char[][] twod2 = new char[3][4];

* This alternative declaration form offers convenience when declaring
several arrays at the same time.

int[] nums, nums2, nums3; // create three arrays.
This is similar to

int nums[], nums2[], nums3[]; // create three arrays

Strings

* The String type is used to declare string variables.
* You can also declare arrays of strings.
* A quoted string constant can be assigned to a String variable.

* A variable of type String can be assigned to another variable of type
String.

* You can use an object of type String as an argument to printin().

String str = "this is a test";
System.out.println(str);

Operators

Arithmetic Operators

Operator Result

+ 'Addition

- _Subtraction (also unary minus)
* Multiplication

/ Division

% Modulus

+4 Increment

+= :Additiun assignment

—= |Subtraction assignment
*= Multiplication assignment
f= Division assignment

%= :Mndulus assignment

- Decrement

* The operands of the arithmetic operators must be of a numeric type.
* You cannot use them on boolean types, but you can use them on char types, since the char type
in Java is, essentially, a subset of int.

The Basic Arithmetic Operators

// Demonstrate the basic arithmetic operators.

class BasicMath |

public static void main(String args[]l) {

J// arithmetic using integers

System.out.println{"Integer Arithmetic") ;

int a =
int b
int ¢
int d
int e

1 + 1;
", B P,
b f &
c - a;
.d_;

System.out.printlni®a =
System.out.println("b =

System.out.printin("ec

System.
System.

out.printin("d
out .println("e =

+ + + + +

J/ arithmetic using doubles

System.out.println("\nFleoating Point Arithmetic");

double
double
double
double
double
System.
System.
System.
System.
SEystem.

da::1+1;
db = da ~ 3;
de =db [/ 4;
dd = dec - a;

de = -dd;
out.println(®da

out .printlni("db
out .println("dc
out.println("dd
out.printlin("de

+ o+ o+ 4+

a);
b) ;
e);
d) ;
&) ;

da) ;
db) ;
dcj) ;
dd) :
de) ;

When you run this program, you will see the following output:

Integer Arithmetic

a =2
b =26
& =
d -1
e =1

Floating Point Arithmetic

da = 2.0
db = 6.0
de = 1.5
dd = -0.5
de = 0.5

The Modulus Operator

* The modulus operator, %, returns the
remainder of a division operation.

* |t can be athiec! to floating-point
types as well as integer types.

// Demonstrate the % operator.
class Modulus |
public static void main(String args[]) {
int x = 42;
double y = 42.25;

"X % 10);
" hy % 10);

Syatem.out .println("x mod 10
System.out .println("y mod 10

}
J

When you run this program, you will get the following output:

]

¥x mod 10
y mod 10

2
2.25

[

Arithmetic Compound Assignment
Operators

* There are compound assignment operators for all of the
arithmetic, binary operators.

+ Any statement of the form var = var op expression;

can be rewritten as var op= expression;

S/ Demonstrate several assignment operators.

class OpEquals
public static wvoid main(String args[]) {

int a =
int b = 2=
int o =

"o Aa);
"+ b);
' %)

System.out.println(ma
System.ocut.printlni"b
System.out.println("c

}
}

The output of this program is shown here:
a = 6
b =8
=3

Increment and Decrement

// Demonstrate ++.
clagss IncDec |
publiec static void main(String args[]) |
int a = 1; The output of this program follows:
int b = 2;
int ¢;
int 4;
C = ++b;
d = a++;
C++;
System.out.println("a
System.ocut.printlin("b =
System.out.printlni("c
System.ocut.println("d

an oW
[
o b

"o+ oa);
b) ;
o)

[
]
+

The Bitwise Operators

_Dperatur _Hesult

~ Bitwise unary NOT

& ‘Bitwise AND

| Bitwise OR

i |Bitwise exclusive OR

shift right

= Shift right zero fill

<< ‘Shift left

&= Bitwise AND assignment

I= |Bitwise OR assignment

A= |Bitwise exclusive OR assignment
>>= Shift right assignment

>>>= ‘Shift right zero fill assignment
<<= ‘Shift left assignment

+ Java defines several bitwise operators that can be applied to the integer types, long, int, short,
char, and byte.
+ These operators act upon the individual bits of their operands.

The Bitwise Logical Operators

A B AlB A&B ANB ~A
0 0 0 0 | o 4
1 0 1 0 | 1 0
0 1 1 0 1 1
1 1 1 g 0 0

// Demonstrate the bitwise logical operators.
class BitLogic {

public static woid main(String args[])

String binary[] = {

{

"g100", "0101", "0110",
"1100", "1101", "1110",

+ 1 or 0011 in binary
+ 0 or 0110 in binary

LU

mw

L

"

L

"

"QgQQ0Q", "0QO1", "OOl10", "CO11",
"1000", "l1001", "1010Q", "1011",
}s
int a=3; //f 0+ 2
int b =6; f/ & + 2
int ¢ = a | b;
int d = a & b;
int e = a * b;
int £ = {(~a & b) | (a & ~b);
int g = ~a & 0x0f;
System.out.println(® a =
System.out.println(® b =
System.out.println(® alb =
System.out.println(® a&b =
System.out.println(" a*b =
System.out.println("~a&b|a&~-b =
System.out.println(" “g =

+ % + + + + +

binary(al};
binary([bl) ;
binary[ecl);
binary[d]};
binarvy(el);
binary[£f]1};
binary([gl);

"g11l",
"1111"

a
b

a|b -
akb =
a’b =

~a&b|a&-b
~a

0011
0110
0111
0010
0101
0101
1100

The Left Shift

* The left shift operator, <%, shifts
all of the bits in a value to the
left a specified number of times.

* It has this general form:
value << num

* num specifies the number of
positions to left-shift the value in
value.

* The outcome of a left shift on a
byte or short value will be an int,
and the bits shifted left will not
be lost until they shift past bit
position 31.

* Each left shift has the effect of
doubling the original value

f/ Left shifting a byte value.
class Byteshift |
public static void main(String args([]) |
byte a = 64, b;

int 1i;
i=2a == 2;
b = (byte) (a << 2);
System.out.printin("original value of a: " + a);
System.out.printin("i and b: " + 1 + " " & b);

)
)

The output generated by this program is shown here:

Original walue of a: 64
i and b: 256 0

The Right Shift

* The right shift operator, >>, shifts all of the bits in a value to the right
a specified number of times. Its general form is shown here: value >>
num

* num specifies the number of positions to right-shift the value in
value.

* Each time you shift a value to the right, it divides that value by two—
and discards any remainder.

Bitwise Operator Compound Assignments

class OpBitEquals |
public static void main(String args(]) {
int a
int b
int C

nmn
o8]

a = C;

System.out .println("a
System.out .println("b
System.out .println("c

" 4+ a);
" + b);
" & C);

The output of this program is shown here:

3
1
b

a
b
C

Relational Operators

* The relational operators determine the relationship that one operand
has to the other.

* Specifically, they determine equality and ordering.

ﬂpﬂ!‘ﬁtﬂf | Result
== Equal to
1= Mot eqgual to
= Greater than
< Less than
>= .Greater than or equal to
<= |Less than or equal to
int done;
7 R
if{!done) ... /S Valid in C/C++
if(done) ... J/ but not in Jawva.

In Java, these statements must be written like this:

if (done == 0) ... [/ This is Java-style.
if(done != 0) ...

Boolean Logical Operators

* All of the binary logical operators combine two boolean values to
form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR |A B AlIB A&B ANB IA

A 'Logical XOR (exclusive OR) |False False False False False True
! il True False True False True False
&é& Shortcircuit AND ; - | |

| Logical unary NOT False True True False True True
R 'AND assignment True True True True False False
= 'OR assignment

A= 'XOR assignment

== .Equa1 to

1= Mot equal to

e Ternary if-then-else

// Demconstrate the boolean logical operators.
class BoolLogic |
public static void main(String args(]) {

boolean a = true; a = true
boolean b = false; b = false
boolean ¢ = a | b; alb = true
boolean d = a & b; akb = false
boclean e = a * b; a"b = true
boolean £ = (!a & b) | (a & !b); agb|a&!b = true
boolean g = !a; la = false
System.out.println(” a="4+a);
System.out.println(" b="4+Db);
System.out.println(" alb =" + ¢);
System.out.println(" akb = " 4+ d);
System.out .println(" a™ = " 4 &8);
System.out.println("!a&bla&!b = " + f);
System.out .println(" ta =" + g);
}

* The Assignment Operator
= The assignment operator is the single

equal sign, =. // Demonstrate ?.
= |t has this general form: var = class Ternary |
EXPTESS-‘.U”; public static void main(String args|[]) {
= Here, the type of var must be _ Rt 5
compatible with the type of expression. T
. ThE ? Operator k=1<07%2-1 ¢ 1; Jf/f get absclute value of 1
. . System.out.print ("Absolute value of ");
» Java includes a special ternary (three- Eonten. it arintintl 4 © Is * 5 Kl
way) operator that can replace
certain types of if-then-else i = -10;
statements. k=1i<0?-1i:1i; // get absolute value of i
) System.out.print ("Absolute value of "} ;
* The ? has this general form: System.out.println(i + " is " + k);
; ‘ }
expressionl1 ? expression2 :)
expression3
] Herej expressionl can be any expressiﬂn The output generated b}’ the program is shown here:

that evaluates to a boolean value.

= |f expressionl is true, then expression2 ,
is evaluated; otherwise, expression3 is Absolute value of -10 1is 10
evaluated.

Absolute walue of 10 is 10

Operator Precedence

Highest

() []

++ - ~ !

=>> > <<

= - — L ==

> | o

= ||~
fe

i~

op=

Control Statements

Java’s Selection Statements

* Java supports two selection statements: if and switch.

* These statements allow you to control the flow of your program’s
execution based upon conditions known only during run time.

* If
" The if statement is Java’s conditional branch statement.
" The general form of the if statement:
if (condition) statement1,
else statement2;

" Here, each statement may be a single statement or a compound statement
enclosed in curly braces (that is, a block).

* The condition is any expression that returns a boolean value.
" The else clause is optional.

* Nested ifs

* A nested if is an if statement that is the target of another if or else.

* When you nest ifs, the main thing to remember is that an else
statement always refers to the nearest if statement that is within the
same block as the else and that is not already associated with an else.

if (i == 10) {
if(j = 20) a = b;
if(k > 100) ¢ = d; // this if is
else a = ¢; // associated with this else

}

else a = d; // this else refers to if(i == 10)

* The if-else-if Ladder

// Demonstrate if-else-if statements.

if(condition) class IfElse {
public static void main(String args([]) {

statement;
else if(condition) i Ratil = gy Bpeka
statement: String season;
Eiﬁgg;:ﬁmm” if (month == 1% || month == || month == 2)
geason = "Winter";
elge if (month == || month == || month == 5)
season = "Spring";
:E!SE else if (month == | | month == || month == 8)
geason = "Summer";
statement; else if (month == 9 || month == 10 || month == 11)
geason = "Autumn";
else
geason = "Bogus Month";

System.out.printin("April is in the " + season + ".");

}
}

Here is the output produced by the program:

April is in the Spring.

switch

* The switch statement is Java’s multiway branch statement.

* It provides an easy way to dispatch execution to different parts of
your code based on the value of an expression.

// A simple example of the switch.

switch (expression) |
case valuel:
[/ statement sequence
break;
case value?:
/[statement sequence
break;

case palueN:

// statement sequence
break;
default:

/ [/ default statement sequence

class sampleswitch |

public static void main(String args(]) {

for(int i=0;
awitch(i) {
case 0:
System.out
break;
case 1:
System.out
break;
case 2:
System.out
break;
case 3:
System.out
break;
default:
System.out

i<6;

1++)

.printin("i

println{vi

println{"i i

Lprintin("i

.println{"i

is

is

is

The output produced by this program .

Zero.") ;

one.") :

Ewo.");

three.") ;

greater than 3.");

e S O SO S

is
is
is
is
is
is

Zero.
one.

two.

three.

greater than 3.
greater than 3.

J// In a switch, break statements are optiomal.
class MissingBreak (
public static void main(String args[]) {
for(int i=0; i<12; i++)
switch(i) {

This program generates the following output:

i is less than &
case 0: i is less than 5
case 1: i is less than 5
case 2: i is less than &5
case := i is less than &
cazistém out.println("i is less than 5"); ? ?s gl e
. . i i is less than 10
break; i is less than 10
case 5: i is less than 10
case 6: i is less than 10
case 7: i is 10 or more
case B8: i is 10 or more
case 9:
System.out.println("i is less than 10");
break;
default:

System.out.println("i is 10 or more");

lteration Statements

* Java’s iteration statements are for, while, and do-while.
* These statements create what we commonly call loops.
* While

* |t repeats a statement or block while its controlling expression is true. Here is
its general form:
while(condition) {
// body of loop
}
" The condition can be any Boolean expression.

* The body of the loop will be executed as long as the conditional expression is
true.

* When condition becomes false, control passes to the next line of code
immediately following the loop.

» The curly braces are unnecessary if only a single statement is being repeated.

// Demonstrate the while loop.
class While |
public static void main(String args([]) {
int n = 10;

while(n > 0) {
System.out.println("tick " + n);
n==;
)
}
}

When you run this program, it will “tick” ten times:

[
o

tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

= b o N O =] D WO

* The body of the while (or any other of Java’s loops)
can be empty.

* This is because a null statement (one that consists
only of a semicolon) is syntactically valid in Java.

[/ The target of a loop can be empty.
class NoBody {
public static void main(String args([]) {
int 1, Jj;

i
j

100;
200;

mn

J/ Eind midpoint between i and j
while(++i < =-j) ; // no body in this loop

System.ocut.println("Midpeoint is " + 1i};
}
}

This program finds the midpnint between 1 and] It generates the f{:rllnwing output:

Midpoint is 150

'

@ s i // Demonstrate the do-while loop.
do-while class DoWhile {

" The do-while loop always executes its body public static void main(String args(]) {
at least once, because its conditional e = 30
expression is at the bottom of the loop. Its ~
general form is System.out.println("tick " + n);
g R
whiililein > :
// body of loop }
} while (condition);)
" Each iteration of the do-while loop first
executes the bndy of the |DDp and then When you run this program, it will “tick” ten times:
eval'uates the .con'dltmnal expressmr). -
" |f this expression is true, the loop will tick 9
repeat. Otherwise, the loop terminates. Lich 9
tick 7
tick 6
tick §
tick 4
tick 3
tick 2
tick 1

* for
* The general form of the traditional for statement:
for(initialization; condition; iteration) {

// body
}
* |f only one statement is being repeated, there is no need for
the curly braces. // Demonstrate the for loop.
= When the loop first starts, the initialization portion of the ~ class ForTick | ,
|DDD is executed. public static void main(String args[]) {
= Generally, this is an expression that sets the value of the ity
loop control variable, which acts as a counter that controls o
the |DD[}. for{n=10; n»0; n--)
e : System.out.println("tick " + n);
= Next, condition is evaluated. This must be a Boolean \ SRR T R
expression. }
" |t ?sually tests the loop control variable against a target
value.

= |f this excl:lression is true, then the body of the loop is
executed. If it is false, the loop terminates.

= Next, the iteration portion of the loop is executed. This is
usually an expression that increments or decrements the
loop control variable.

The For-Each Version of the for Loop

J/ Use a for-each style for loop.

* Java adds the for-each capability by enhancing the for 1.cc rorzach |

statement. public static void main(String args(]) {
int numse[] = { 1, 2, 3, 4, 5,6, 7, 8, 9, 10 };
* The advantage of this approach is that no new keyword Lo
is required, and no preexisting code is broken. // use for-each style for to display and sum the values
* The for-each style of for is also referred to as the foz}?;;;miﬁt?;:}tt:’[n[ﬂvalue is: v+ %)
enhanced for loop. sum += x;

}
* The general form of the for-each version of the for is:

System.cut.println{"Summation: " + sum);

for(type itr-var : collection) statement-block \

The output from the program

* Here, type specifies the type and itr-var specifies the

: . i i . Val is: 1

name of an iteration variable that will receive the g ol

elements from a collection, one at a time, from Value is: 3

beginning to end. Value 1s: 4

Value is: &

* With each iteration of the loop, the next element in the Value is: 6

collection is retrieved and stored in itr-var. S il

* The loop repeats until all elements in the collection yarue ms 2
Value 1s: 10

have been obtained. Summation: 55

// Use break with a for-each style for.
class ForEach2 {
public static void main(String args[]) {
int sum = 0;
int nums(] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// use for to display and sum the values
for(int x : nums) {
System.out.println("value is: " + x);

sum += X:
if(x == 5) break; // stop the loop when 5 is obtained
}
System.out.println("Summation of first 5 elements: " + sum);
}
]
This is the output produced:
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5

Summation of first 5 elements: 15

Jump Statements // Using break to exit a loop.

class BreakLoop {

public static void main(string args[]) {
. . for(int i=0; i<100; i++) {
£ Java Supports three Jump Statements' if (i == 10) break; // terminate loop if i is 10
break, continue, and return. } System.out .println("i: " + i);
* These statements transfer control to } g e e B Sy
another part of your program. }
¢ USing break This program generates the following output:
= By using break, you can force immediate i: 0
termination of a loop, bypassing the e
conditional expression and any remaining i: 3
code in the body of the loop. o
* When a break statement is encountered b 3
inside a loop, the loop is terminated and =
program control resumes at the next i 9)
ocop complete.

statement following the loop.

* Using break as a Form of Goto
= The general form of the labeled break statement is shown here:

break label;
" label is the name of a label that identifies a block of code.

// Usging break as a ciwvilized form of goto.

class Break {
public static void main(string args([]) {

boclean t = true:

first: |
second: |

third: |
System.out.println({"Before the break.");

if(t) break second; // break out of second block
System.cut.println("This won't execute");

}

System.out.println("This won't execute"):

System.ocut .println("This is after second block.");
}

}
}

Running this program generates the following output:

Before the brealk.
This is after second block.

* Using continue

= A continue statement causes control to be transferred directly to the
conditional expression that controls the loop.

// Using continue with a label.
class ContinueLabel {

/. DSIORSETRES: Soni i public static void main(String args(]) {

class Continue |

public static void main(string args[l) { Shten: Tor tiFt i%ﬂ; iflﬂ; 1T+} {
for (int i=0; i<10; i++) | for(int j=0; j<10; J++) {
System.out.print{i + " "); if(3 > 1) {
if (i%2 == 0) continue; System.out.println();
System.out.printin(""); } continue outer;
} : System.cut.printi{" " + (i * 3));

))
}

System.out.println() ;

01 } 0
2 3 }
4 5 "
& 7
8 9 6 9
B 12 16
10 15 20 25

12 18 24 30 26

14 21 28 135 432 49

16 24 32 40 48 56 64

18 27 36 45 54 63 72 Bl

o oo oo oo oo
W 3D -] Oh R s W B

* return

1 D I -at 3 .
* The return statement is used to o Bt v 7 Wi

class Return ({

explicitly return from a method. public static void main(String args(]) {
boolean £t = true;

= |t causes program control to
tra HSfer baCk to the Caller Uf the System.out.println("Before the return.");
mEthDd' if(t) return; // return to caller

. At En'f timeina mEthDd thE System.out.println("This won't exXecute.");
return statement can be used to }
cause execution to branch back to ’
thE Ca”E'r {Jf thE' mEthﬂd . The output from this program is shown here:

" Thus, the return statement Before the return.

immediately terminates the
method in which it is executed.

