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Outline

 Attributes and Objects
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 Data Preprocessing

 Similarity and Distance



What is Data?

 Collection of data objects 
and their attributes

 An attribute is a property or 
characteristic of an object

– Examples: eye color of a 
person, temperature, etc.

– Attribute is also known as 
variable, field, characteristic, 
dimension, or feature

 A collection of attributes 
describe an object

– Object is also known as 
record, point, case, sample, 
entity, or instance

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Attributes
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ts

Tid Refund Marital 
Status 
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Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Attribute Values

 Attribute values are numbers or symbols 
assigned to an attribute for a particular object

 Distinction between attributes and attribute values
– Same attribute can be mapped to different attribute 

values
  Example: height can be measured in feet or meters

– Different attributes can be mapped to the same set of 
values

  Example: Attribute values for ID and age are integers
–  But properties of attribute can be different than the 

properties of the values used to represent the 
attribute



Measurement of Length 
 The way you measure an attribute may not match the 

attributes properties.
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Types of Attributes 

  There are different types of attributes
– Nominal

 Examples: ID numbers, eye color, zip codes
– Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale 
from 1-10), grades, height {tall, medium, short}

– Interval
 Examples: calendar dates, temperatures in Celsius or 

Fahrenheit.
– Ratio

 Examples: temperature in Kelvin, length, counts, elapsed 
time (e.g., time to run a race) 
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Properties of Attribute Values 

 The type of an attribute depends on which of the 
following properties/operations it possesses:
– Distinctness:  =  and  =
– Order:   <, < ,  >, and >  
– Addition  + and - 
– Multiplicaton    * and /

– Nominal attribute: distinctness
– Ordinal attribute: distinctness & order
– Interval attribute: distinctness, order & meaningful 

differences
– Ratio attribute: all 4 properties/operations
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Types of Attributes - Nominal
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Types of Attributes - Ordinal
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Types of Attributes - Interval
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Types of Attributes - Ratio



 Attribute 
Type 

Description 
 

Examples 
 

Operations 
 

Nominal 
 

Nominal attribute 
values only  
distinguish. (=, ) 

zip codes, employee 
ID numbers, eye 
color, sex: {male, 
female} 

mode, entropy, 
contingency 
correlation, 2 
test 
 

C
at

eg
or

ic
al

 
Q

ua
lit

at
iv

e 
 

Ordinal Ordinal attribute 
values also order 
objects.  
(<, >) 

hardness of minerals, 
{good, better, best},  
grades, street 
numbers 

median, 
percentiles, rank 
correlation, run 
tests, sign tests 

Interval For interval 
attributes, 
differences between 
values are 
meaningful. (+, - ) 

calendar dates, 
temperature in 
Celsius or Fahrenheit 

mean, standard 
deviation, 
Pearson's 
correlation, t and 
F tests 

N
um

er
ic

 
Q

ua
nt

ita
tiv

e 

Ratio For ratio variables, 
both differences and 
ratios are 
meaningful. (*, /) 

temperature in Kelvin, 
monetary quantities, 
counts, age, mass, 
length, current 

geometric mean, 
harmonic mean, 
percent variation 

This categorization of attributes is due to S. S. Stevens



 Attribute 
Type 

Transformation 
 

Comments 
 

C
at

eg
or

ic
al

 
Q

ua
lit

at
iv

e 
 

Nominal 
 

Any permutation of values 
 

If all employee ID numbers 
were reassigned, would it 
make any difference? 
 

Ordinal An order preserving change of 
values, i.e.,  
new_value = f(old_value)  
where f is a monotonic function 
 

An attribute encompassing 
the notion of good, better best 
can be represented equally 
well by the values {1, 2, 3} or 
by { 0.5, 1, 10}. 
 

N
um

er
ic

 
Q

ua
nt

ita
tiv

e 

Interval new_value = a * old_value + b 
where a and b are constants 

Thus, the Fahrenheit and 
Celsius temperature scales 
differ in terms of where their 
zero value is and the size of a 
unit (degree). 

Ratio new_value = a * old_value 
 

Length can be measured in 
meters or feet. 

 

This categorization of attributes is due to S. S. Stevens
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Discrete and Continuous Attributes 

 Discrete Attribute
– Has only a finite or countably infinite set of values
– Examples: zip codes, counts, or the set of words in a 

collection of documents 
– Often represented as integer variables.   
– Note: binary attributes are a special case of discrete 

attributes 
 Continuous Attribute 

– Has real numbers as attribute values
– Examples: temperature, height, or weight.  
– Practically, real values can only be measured and 

represented using a finite number of digits.
– Continuous attributes are typically represented as floating-

point variables.  
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Important Characteristics of Data

– Dimensionality (number of attributes)
  High dimensional data brings a number of challenges

– Sparsity
  Only presence counts

– Resolution
  Patterns depend on the scale 

– Size
 Type of analysis may depend on size of data
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Types of data sets 
 Record

– Data Matrix
– Document Data
– Transaction Data

 Graph
– World Wide Web
– Molecular Structures

 Ordered
– Spatial Data
– Temporal Data
– Sequential Data
– Genetic Sequence Data
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Record Data 

 Data that consists of a collection of records, each 
of which consists of a fixed set of attributes 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 
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8 No Single 85K Yes 

9 No Married 75K No 
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10 
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Data Matrix 

 If data objects have the same fixed set of numeric 
attributes, then the data objects can be thought of as 
points in a multi-dimensional space, where each 
dimension represents a distinct attribute 

 Such a data set can be represented by an m by n matrix, 
where there are m rows, one for each object, and n 
columns, one for each attribute
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of y load
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Document Data

 Each document becomes a ‘term’ vector 
– Each term is a component (attribute) of the vector
– The value of each component is the number of times 

the corresponding term occurs in the document. 

Document 1
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Transaction Data

 A special type of data, where 
– Each transaction involves a set of items.  
– For example, consider a grocery store.  The set of products purchased 

by a customer during one shopping trip constitute a transaction, while 
the individual products that were purchased are the items.

– Can represent transaction data as record data 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Graph Data 
 Examples: Generic graph, a molecule, and webpages 
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Ordered Data 

 Sequences of transactions

An element of 
the sequence

Items/Events
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Ordered Data 

  Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG
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Ordered Data

 Spatio-Temporal Data

Average Monthly 
Temperature of 
land and ocean



01/27/2021 29Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

Data Quality 

 Poor data quality negatively affects many data processing 
efforts

 Data mining algorithms gives results(extracts) only what is 
there in the data.

 If data quality issues are not handled carefully, then Data 
mining algorithms will produce erroneous or spurious 
output.

 Data mining example: a classification model for detecting 
people who are loan risks is built using poor data

– Some credit-worthy candidates are denied loans
– More loans are given to individuals that default
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Data Quality .. 

 To overcome the poor data quality problem, Data mining 
focuses on:

1)  The detection and correction of data quality problem ( is        
  often called data cleaning) 

2)  The use of algorithms that can tolerate poor data quality
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Data Quality …

 What kinds of data quality problems?
 How can we detect problems with the data? 
 What can we do about these problems? 

 Examples of data quality problems: 
– Noise and outliers 
– Wrong data 
– Fake data 
– Missing values 
– Duplicate data 
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Noise

 For objects, noise is an extraneous object
 For attributes, noise refers to modification of original values

– Examples: distortion of a person’s voice when talking on a poor phone and 
“snow” on television screen

– The figures below show two sine waves of the same magnitude and 
different frequencies, the waves combined, and the two sine waves with 
random noise

  The magnitude and shape of the original signal is distorted 
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 Outliers are data objects with characteristics that 
are considerably different than most of the other 
data objects in the data set
–  

 

Outliers

For example:  In fraud and 
network intrusion detection, 
the goal is to find unusual 
objects or events from 
among a large number of 
normal ones.
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Missing Values

 Reasons for missing values
– Information is not collected 

(e.g., people decline to give their age and weight)
– Attributes may not be applicable to all cases 

(e.g., annual income is not applicable to children)

 Handling missing values
– Eliminate data objects or variables
– Estimate missing values

 Example: time series of temperature
 Example: census results 

– Ignore the missing value during analysis
– Replace with all possible values(weighted by their probabilities)
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Duplicate Data

 Data set may include data objects that are 
duplicates, or almost duplicates of one another
– Major issue when merging data from heterogeneous 

sources

 Examples:
– Same person with multiple email addresses

 Data cleaning
– Process of dealing with duplicate data issues
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Data Quality - In a nutshell

Data mining algorithms gives results(extracts) only what is 
there in the data.

If data quality issues are not handled carefully, then Data 
mining algorithms will produce erroneous or spurious output.

So the Preprocessing is indeed a very important step to 
solve the data quality problems. (next topic)
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Data Preprocessing

 Aggregation
 Sampling
 Dimensionality Reduction
 Feature Subset Selection
 Feature Creation
 Discretization and Binarization
 Variable Transformation
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Aggregation

 Combining two or more attributes (or objects) into a single 
attribute (or object)

 Purpose
– Data reduction -  reduce the number of attributes or objects
– Change of scale

  Cities aggregated into regions, states, countries, etc.
  Days aggregated into weeks, months, or years

– More “stable” data -  aggregated data tends to have less variability 
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Aggregation

 An obvious issue is how an aggregate transaction is created?

 Quantitative attributes
– such as price, are typically aggregated by taking a sum or an average

 Qualitative attributes
– such as item, can either be omitted or summarized in terms of a higher level 

category, e.g., televisions versus electronics

 Disadvantages of aggregation
– Potential loss of interesting details
– In store example: aggregation over months loses information about which day of the 

week has the highest sales. 
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Example: Precipitation in Australia

 This example is based on precipitation in Australia 
from the period 1982 to 1993. 
The next slide shows 
– A histogram for the standard deviation of average 

monthly precipitation for 3,030 0.5◦ by 0.5◦ grid cells in 
Australia, and

– A histogram for the standard deviation of the average 
yearly precipitation for the same locations.

 The average yearly precipitation has less variability 
than the average monthly precipitation. 

 All precipitation measurements (and their standard 
deviations) are in centimeters.
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Example: Precipitation in Australia …

Standard Deviation of Average 
Monthly Precipitation

Standard Deviation of 
Average Yearly Precipitation

Variation of Precipitation in Australia
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Sampling 
 Sampling is the main technique employed for data 

reduction.
– It is often used for both the preliminary investigation of the 

data and the final data analysis.
 

 Statisticians often sample because obtaining the entire 
set of data of interest is too expensive or time 
consuming.

 
 Sampling is typically used in data mining because 

processing the entire set of data of interest is too 
expensive or time consuming.
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Sampling … 

 The key principle for effective sampling is the 
following: 

– Using a sample will work almost as well as using the 
entire data set, if the sample is representative
 

– A sample is representative if it has approximately the 
same properties (of interest) as the original set of data 
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Sample Size

 

8000 points          2000 Points 500 Points

Figure 2.9. Example of the loss of structure with 
sampling
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Types of Sampling
 Simple Random Sampling

 There is an equal probability of selecting any particular item

 Sampling without replacement
 As each item is selected, it is removed from the population

 Sampling with replacement
– Objects are not removed from the population as they are 

selected for the sample.
 In sampling with replacement, the same object can be picked up 

more than once

 Stratified sampling
– Split the data into several partitions; then draw random samples 

from each partition
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Types of Sampling

 Simple Random Sampling
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Types of Sampling

 Stratified Sampling
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Sample Size
 What sample size is necessary to get at least one 

object from each of 10 equal-sized groups.
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Curse of Dimensionality

 When dimensionality increases, data becomes increasingly sparse in 
the space that it occupies

 Definitions of density and distance between points, which are critical for 
clustering and outlier detection, become less meaningful

 Many clustering and classification algorithms have trouble with high-
dimensional data leading to reduced classification accuracy and poor 
quality clusters. 
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Dimensionality Reduction

 Purpose:
– Avoid curse of dimensionality
– Reduce amount of time and memory required by data 

mining algorithms
– Allow data to be more easily visualized
– May help to eliminate irrelevant features or reduce 

noise

 Techniques
– Principal Components Analysis (PCA)
– Singular Value Decomposition
– Others: supervised and non-linear techniques
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Dimensionality Reduction: PCA

 A data reduction technique that transforms a large 
number of correlated variables into a smaller set of 
correlated variables called principal components

● a method of extracting important variables from a large 
number of variables available in a dataset

● it extracts a set of low-dimensional features from a high-
dimensional dataset with the goal of capturing as much 
information as possible(variance) in the data.
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Dimensionality Reduction: PCA

 Steps Involved in the Principal Component 
Analysis:

● Standardize the dataset
● Compute the covariance matrix for the features in 

the dataset
● Compute the eigenvalues and eigenvectors for the 

covariance matrix
● Sort the eigenvalues and their corresponding 

eigenvectors
● Choose k eigenvalues to form an eigenvector matrix
● Transform the original matrix
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Dimensionality Reduction: PCA

 Goal is to find a projection that captures the 
largest  amount of variation in data

x2

x1

e
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Feature Subset Selection

 Another way to reduce dimensionality of data
– Use only a subset of the features

 Redundant features 
– Duplicate much or all of the information contained in one or 

more other attributes
– Example: purchase price of a product and the amount of sales 

tax paid
 Irrelevant features

– Contain no information that is useful for the data mining task at 
hand

– Example: students' ID is often irrelevant to the task of 
predicting students' GPA

 Redundant and irrelevant features can reduce classification 
accuracy and the quality of the clusters that are found.
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Feature Subset Selection

 Techniques
 Brute-Force approach:

 Try all possible feature subsets as input to data mining 
algorithm, and then take the subset that produces the best 
results

 Embedded approaches:
 Feature selection occurs naturally as part of the data mining 

algorithm
 the data mining algorithm itself decides which attributes 

to use and which to ignore.
 For example: Algorithms for building decision tree 

classifiers



01/27/2021 57Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

Feature Subset Selection

 Techniques
 Filter approaches:

 Feature are selected before data mining algorithm is run
 Using some approach that is independent of the data mining 

task.
 For example: select sets of attributes whose pairwise 

correlation is as low as possible.

 Wrapper approaches:
 Use the data mining algorithm as a black box to find best 

subset of attributes
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An Architecture for Feature Subset Selection

 It is possible to encompass both the filter and 
wrapper approaches within a common architecture

 The feature selection process view as consisting of 
four parts:
 A measure for evaluating a subset

 Filter methods and Wrapper methods differ only in the way in 
which they evaluate a subset of features

 A search strategy that controls the generation of a new 
subset of features

 A stopping criterion
 A validation procedure



01/27/2021 59Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

An Architecture for Feature Subset Selection
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Feature Creation

 Create new attributes that can capture the 
important information in a data set much more 
efficiently than the original attributes

 Three general methodologies:
– Feature extraction

 Example: extracting edges from images
– Feature construction

  Example: dividing mass by volume to get density 
– Mapping data to new space

  Example: Fourier and wavelet analysis 
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Mapping Data to a New Space

Two Sine Waves + Noise Frequency

 Fourier and wavelet transform

Frequency
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Discretization

 Discretization is the process of converting a 
continuous attribute into a categorical attribute
– A potentially infinite number of values are mapped into  

a small number of categories
– Discretization is  used in both unsupervised and 

supervised settings

 Discretization is typically applied to attributes that 
are used in classification or association analysis
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Discretization of continuous attributes

 Transformation of a continuous attribute to a 
categorical attribute involves two subtasks:
– deciding how many categories, n, to have 

– determining how to map the values of the continuous 
attribute to these categories. 

 In the first step, after the values of the continuous 
attribute are sorted, they are then divided into n 
intervals by specifying n − 1 split points.

 In the second step, all the values in one interval are 
mapped to the same categorical value.
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Unsupervised Discretization

Data consists of four groups of points and two outliers. Data is one-
dimensional, but a random y component is added to reduce overlap.
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Unsupervised Discretization

Equal interval width approach used to obtain 4 values. 
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Unsupervised Discretization

Equal frequency(equal depth) approach used to obtain 4 values.
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Unsupervised Discretization

K-means approach to obtain 4 values.
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Binarization
 Binarization maps a continuous or categorical 

attribute into one or more binary variables
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Attribute Transformation

 An attribute transform is a function that maps the 
entire set of values of a given attribute to a new 
set of replacement values such that each old 
value can be identified with one of the new 
values

– Simple functions: xk, log(x), ex, |x|

– Standardization and Normalization
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Similarity and Dissimilarity Measures

 Similarity measure
– Numerical measure of how alike two data objects are.
– Is higher when objects are more alike.
– Often falls in the range [0,1]

 Dissimilarity measure
– Numerical measure of how different two data objects 

are 
– Lower when objects are more alike
– Minimum dissimilarity is often 0
– Upper limit varies

 Proximity refers to a similarity or dissimilarity
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Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity 
between two objects, x and y, with respect to a single, simple 
attribute.
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Euclidean Distance

 Euclidean Distance

   

where n is the number of dimensions (attributes) and xk 
and yk  are, respectively, the kth attributes (components) 
or data objects x and y.

  Standardization is necessary, if scales differ.
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Euclidean Distance

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0
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Minkowski Distance

 Minkowski Distance is a generalization of Euclidean 
Distance

   
   Where r is a parameter, n is the number of dimensions 

(attributes) and xk and yk are, respectively, the kth 
attributes (components) or data objects x and y.
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Minkowski Distance: Examples

 r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
– A common example of this for binary vectors is the Hamming 

distance, which is just the number of bits that are different 
between two binary vectors

 r = 2.  Euclidean distance

 r = ∞.  “supremum” (Lmax norm, L norm) distance. 
– This is the maximum difference between any component of 

the vectors

 Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions.
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Minkowski Distance

Distance Matrix

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0
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Mahalanobis Distance

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

 is the covariance matrix

-0.5
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Mahalanobis Distance

Covariance 
Matrix:











3.02.0
2.03.0

A: (0.5, 0.5)
B: (0, 1)
C: (1.5, 1.5)

Mahal(A,B) = 5
Mahal(A,C) = 4 

B

A

C 









3.02.0
2.03.0
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