
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

Programming in Java

Course Web Page
(www.mkbhandari.com/mkwiki)

Introducing Classes

Outline

1

Declaring Objects

Class Fundamentals

2

Introducing Methods3

Constructors4

The this Keyword5

Garbage Collection6

The finalize() Methods7

Class Fundamentals

Class is the logical construct upon which the entire Java language is built because it
defines the shape and nature of an object.

The class forms the basis for object-oriented programming in Java.

Any concept you wish to implement in a Java program must be encapsulated within a
class.

A class defines a new data type. Once defined, this new type can be used to create
objects of that type.

Thus, a class is a template or blueprint for an object, and an object is an instance of a
class.

Because an object is an instance of a class, you will often see the two words object
and instance used interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature (the data that it
contains and the code that operates on that data).

While very simple classes may contain only code or only data, most real-world classes
contain both.

A class is declared by use of the class keyword.

A class’ code defines the interface to its data.

The General Form of a Class

A simplified general form of a class definition is shown here:

class classname {
type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;

type methodname1(parameter-list) {
// body of method

}
type methodname2(parameter-list) {

// body of method
}
// ...
type methodnameN(parameter-list) {

// body of method
}

}

class: A class is declared by use of the class keyword.1

Methods: The code is contained within methods and
they determine how a class’ data can be used.

3

Members: The methods and variables defined within
a class are called members of the class.

4

Instance Variables: The data, or variables, defined
within a class are called instance variables.

Because each instance of the class contains its own
copy of variables.

Thus, the data for one object is separate and unique
from the data for another.

2

A Simple Class

// A program that uses the Box class.
class Box {

double width;
double height;
double depth;

}
// This class declares an object of type Box.
class BoxDemo {

public static void main(String args[]) {
Box mybox = new Box();
double vol;
// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;
System.out.println("Volume is " + vol);

}
}

Class Box defines three instance variables: width,
height, and depth.

1

In this example Box does not contain any methods.2

As class defines a new type of data, in this case, the
new data type is called Box.

3

A class declaration only creates a template; it does
not create an actual object.

4

To actually create a Box object, you will use a
statement like the following:

Box mybox = new Box();

5

After the above statement executes, mybox will
be an instance of Box. Thus, it will have “physical”
reality.

6

A Simple Class

// A program that uses the Box class.
class Box {

double width;
double height;
double depth;

}
// This class declares an object of type Box.
class BoxDemo {

public static void main(String args[]) {
Box mybox = new Box();
double vol;
// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;
System.out.println("Volume is " + vol);

}
}

Every Box object will contain its own copies of the
instance variables width, height, and depth.

7

To access these variables, you will use the dot (.)
operator.

8

In general, you use the dot operator to access
both the instance variables and the methods
within an object.

10

The dot operator links the name of the object with
the name of an instance variable.

mybox.width = 100;

9

One other point: Although commonly referred to
as the dot operator, the formal specification for
Java categorizes the dot (.) as a separator.

11

A Simple Class

// A program that uses the Box class.
class Box {

double width;
double height;
double depth;

}
// This class declares an object of type Box.
class BoxDemo {

public static void main(String args[]) {
Box mybox = new Box();
double vol;
// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;
System.out.println("Volume is " + vol);

}
}

What will be the name of file for this program?Q1

How many .class files will be created when you
compile this program?

Q2

To run this program, which .class file must be
executed?

Q3

Q4 What will be the output of this program?

A Simple Class

// A program that uses the Box class.
class Box {

double width;
double height;
double depth;

}
// This class declares an object of type Box.
class BoxDemo {

public static void main(String args[]) {
Box mybox = new Box();
double vol;
// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;
System.out.println("Volume is " + vol);

}
}

What will be the name of file for this program?

BoxDemo.java

Q1

How many .class files will be created when you
compile this program?

Two .class files, one for Box and one for BoxDemo

Q2

To run this program, which .class file must be
executed?
BoxDemo.class

Q3

Q4 What will be the output of this program?

Volume is 3000.0

A Simple Class with two objects
// This program declares two Box objects.
// class Box is same as previous program
class BoxDemo2 {

public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;
// assign values to mybox2's instance variables
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;
// compute volume of first box
vol = mybox1.width * mybox1.height * mybox1.depth;
System.out.println("Volume is " + vol);
// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

}
}

Each object has its own copies of the instance
variables.

1

It means if you have two Box objects, each has its
own copy of depth, width, and height.

2

Changes to the instance variables of one object
have no effect on the instance variables of another.

3

Q. What will be the output of this program?

A Simple Class with two objects
// This program declares two Box objects.
// class Box is same as previous program
class BoxDemo2 {

public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;
// assign values to mybox2's instance variables
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;
// compute volume of first box
vol = mybox1.width * mybox1.height * mybox1.depth;
System.out.println("Volume is " + vol);
// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

}
}

Each object has its own copies of the instance
variables.

1

It means if you have two Box objects, each has its
own copy of depth, width, and height.

2

Changes to the instance variables of one object
have no effect on the instance variables of another.

3

Q. What will be the output of this program?

Volume is 3000.0
Volume is 162.0

T How will you declare 50 or 100 objects?

A Simple Class with two objects
// This program declares two Box objects.
// class Box is same as previous program
class BoxDemo2 {

public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;
// assign values to mybox2's instance variables
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;
// compute volume of first box
vol = mybox1.width * mybox1.height * mybox1.depth;
System.out.println("Volume is " + vol);
// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.println("Volume is " + vol);

}
}

Each object has its own copies of the instance
variables.

1

It means if you have two Box objects, each has its
own copy of depth, width, and height.

2

Changes to the instance variables of one object
have no effect on the instance variables of another.

3

Q. What will be the output of this program?

Volume is 3000.0
Volume is 162.0

T How will you declare 50 or 100 objects?
Box nboxes[]= new Box[50];

Declaring Objects

When you create a class, you are creating a new data type, and this new data type can
be used to declare objects of that type.

However, obtaining objects of a class is a two-step process.

Declare a variable of the class type. This variable does not define an object. Instead, it is
simply a variable that can refer to an object.

1

Acquire an actual, physical copy of the object and assign it to that variable using the new
operator.

2

The new operator dynamically allocates (that is, allocates at run time) memory for an
object and returns a reference to it.

This reference is, more or less, the address in memory of the object allocated by new.

This reference is then stored in the variable. Thus, in Java, all class objects must be
dynamically allocated.

Declaring Objects

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to
show each step more clearly:

Box mybox;
// declare reference to object

mybox = new Box();
// allocate a Box object

A Closer Look at new

The new operator dynamically allocates memory for an object. It has this general
form:

class-var = new classname();

class-var is a variable of the class type being created.1

The classname is the name of the class that is being instantiated.2

The class name followed by parentheses specifies the constructor for the class.3

Most real-world classes explicitly define their own constructors within their class definition.

However, if no explicit constructor is specified, then Java will automatically supply a default
constructor.

A Closer Look at new

Why you do not need to use new for such things as integers or characters?

What if new will not be able to allocate memory for an object because insufficient
memory exists?

Q1

Q2

A Closer Look at new

Why you do not need to use new for such things as integers or characters?

What if new will not be able to allocate memory for an object because insufficient
memory exists?

Q1

Q2

Java’s primitive types are not implemented as objects. Rather, they are implemented as
“normal” variables.

If this happens, a run-time exception will occur.

Review the distinction b/w a Class and an Object

A class creates a new data type that can be used to create objects.

A class creates a logical framework that defines the relationship between its
members.

When you declare an object of a class, you are creating an instance of that class.

Thus, a class is a logical construct. An object has physical reality. (That is, an object
occupies space in memory.)

Assigning Object Reference Variables

What do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

Both b1 and b2 will refer to the same object.1

The assignment of b1 to b2 do not allocate
any memory or copy any part of the
original object.

2

It simply makes b2 refer to the same object
as does b1.
Thus, any changes made to the object
through b2 will affect the object to which
b1 is referring, since they are the same
object.

4

3 What will happen after following assignment?
Box b1 = new Box();
Box b2 = b1;
// ...
b1 = null;

Q

Assigning Object Reference Variables

What do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

Both b1 and b2 will refer to the same object.1

The assignment of b1 to b2 do not allocate
any memory or copy any part of the
original object.

2

It simply makes b2 refer to the same object
as does b1.
Thus, any changes made to the object
through b2 will affect the object to which
b1 is referring, since they are the same
object.

4

3 What will happen after following assignment?
Box b1 = new Box();
Box b2 = b1;
// ...
b1 = null;

b1 is set to null, b2 still points to the original object.

Q

X

Assigning Object Reference Variables

What do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

Both b1 and b2 will refer to the same object.1

The assignment of b1 to b2 do not allocate
any memory or copy any part of the
original object.

2

It simply makes b2 refer to the same object
as does b1.
Thus, any changes made to the object
through b2 will affect the object to which
b1 is referring, since they are the same
object.

4

3

 When you assign one object reference
variable to another object reference variable,
you are not creating a copy of the object, you
are only making a copy of the reference.

Rem.

Introducing Methods

A class usually consist of two things: instance variables and methods.

The general form of a method is:

type name(parameter-list) {

// body of method

}

type: specifies the type of data returned by the
method. This can be:

1

Any valid type – including class types that you
create.
void – if the method does not return a value.

name: any legal identifier.2

The parameter-list: is a sequence of type and
identifier pairs separated by commas.

Parameters are essentially variables that receive the
value of the arguments passed to the method when
it is called.

3

Introducing Methods

A class usually consist of two things: instance variables and methods.

The general form of a method is:

type name(parameter-list) {

// body of method

}

Methods that have a return type other than void
return a value to the calling routine using the
following form of the return statement:

return value;

4

Adding a Method to the Box Class

Most of the time, you will use methods to access the instance variables defined by the
class.

Methods define the interface to most classes.

This allows the class implementor to hide the specific layout of internal data
structures behind cleaner method abstractions.

In addition to defining methods that provide access to data, you can also define
methods that are used internally by the class itself.

Adding a Method to the Box Class

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box
void volume() {

System.out.print("Volume is ");
System.out.println(width * height * depth);

}
}

Inside the volume() method: the instance
variables width, height, and depth are
referred to directly, without preceding them
with an object name or the dot operator.

1

When a method uses an instance variable
that is defined by its class, it does so directly,
without explicit reference to an object and
without use of the dot operator.

2

The reason is: A method is always invoked
relative to some object of its class. Once this
invocation has occurred, the object is known.

3

Adding a Method to the Box Class

class BoxDemo3 {
public static void main(String args[]) {

Box mybox1 = new Box();
Box mybox2 = new Box();
// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;
// assign values to mybox2's instance variables
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;
// display volume of first box
mybox1.volume();
// display volume of second box
mybox2.volume();

}
}

Q. What will be the output of this program?

Volume is 3000.0
Volume is 162.0

Returning a Value
// In this program volume() returns the volume of a box.
class Box {

double width;
double height;
double depth;

// compute and return volume
double volume() {

return width * height * depth;
}

}
class BoxDemo4{

public static void main(String args[]) {
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// assign values to mybox1's instance variables
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

// assign values to mybox2's instance variables
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

Returning a Value

There are two important things to understand about returning values:

The preceding program can be written a bit more efficiently because there is actually
no need for the vol variable.

The type of data returned by a method must be compatible with the return type specified by
the method. For example, if the return type of some method is boolean, you could not return
an integer.

1

The variable receiving the value returned by a method (such as vol, in this case) must also be
compatible with the return type specified for the method.

2

When println() is executed, mybox1.volume() will be called automatically and its
value will be passed to println().

System.out.println("Volume is" + mybox1.volume());

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do.

Parameters allow a method to be generalized. That is, a parameterized method can
operate on a variety of data and/or be used in a number of slightly different
situations.

// Returns the value of 10 squared
int square() {

return 10 * 10;
}

// Returns the square of whatever value it is called with.
int square(int i) {

return i * i;
}

// Example
int x, y;
x = square(5); // x equals 25
x = square(9); // x equals 81
y = 2;
x = square(y); // x equals 4

Adding a Method That Takes Parameters

// This program uses a parameterized method.
class Box {

double width;
double height;
double depth;

// compute and return volume
double volume() {

return width * height * depth;
}

// sets dimensions of box
void setDim(double w, double h, double d) {

width = w;
height = h;
depth = d;

}
}

Adding a Method That Takes Parameters

class BoxDemo5 {
public static void main(String args[]) {

Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
// initialize each box
mybox1.setDim(10, 20, 15);
mybox2.setDim(3, 6, 9);

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

Concepts in methods:
method calls/invocation,
arguments,
parameters,
return values
Return types

C.

Constructors

A constructor initializes an object immediately upon creation.

Java allows objects to initialize themselves when they are created.

→ This automatic initialization is performed through the use of a constructor.

→ It has the same name as the class in which it resides and is syntactically similar to a
method but they have no return type, not even void.

→ Once defined, the constructor is automatically called when the object is created, before
the new operator completes.

→ The implicit return type of a class’ constructor is the class type itself.

→ It is the constructor’s job to initialize the internal state of an object so that the code
creating an instance will have a fully initialized, usable object immediately.

Constructors

// Here, Box uses a constructor to initialize the dimensions of box.
class Box {

double width;
double height;
double depth;

// This is the constructor for box.
Box() {

System.out.println("Constructing Box");
width = 10;
height = 10;
depth = 10;

}

// compute and return volume
double volume() {

return width * height * depth;
}

}

class BoxDemo6 {
public static void main(String args[]) {

// declare, allocate, and initialize Box objects
Box mybox1 = new Box();
Box mybox2 = new Box();

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

Constructors

The output of the program is shown here:

Default constructor
→ When you do not explicitly define a constructor for a class, then Java creates a default

constructor for the class.

→ The default constructor automatically initializes all instance variables to their default
values, which are zero, null, and false, for numeric types, reference types, and boolean,
respectively.

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

→ Once you define your own constructor, the default constructor is no longer used.

Parameterized Constructors

→ Default constructor - provide the default values to the objects like 0, null, false, etc.,
depending on the data type of the instance variables.

The parameterized constructor is used to provide different values to distinct objects.

→ No-argument Constructor - it is not very useful (all objects will have the same values).

→ Parameterized Constructor - a way to construct objects of with different values (by adding
parameters to the constructor).

Parameterized Constructors

// Here, Box uses a parameterized constructor to initialize the dimensions of box.
class Box {

double width;
double height;
double depth;

// This is the constructor for box.
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// compute and return volume
double volume() {

return width * height * depth;
}

}

class BoxDemo7 {
public static void main(String args[]) {

// declare, allocate, and initialize Box objects
Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

}
}

Parameterized Constructors

The output of the program is shown here:
Volume is 3000.0
Volume is 162.0

→ Each object is initialized as specified in the parameters to its constructor.

→ For example, in the following line:

→ The values 10, 20, and 15 are passed to the Box() constructor when new creates the
object.

→ Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,
respectively.

Box mybox1 = new Box(10, 20, 15);

The this Keyword

→ To allow this, Java defines the this keyword.

→ That is, this is always a reference to the object on which the method was invoked.

Sometimes a method will need to refer to the object that invoked it.

this can be used inside any method to refer to the current object.

You can use this anywhere a reference to an object of the current class’ type is
permitted.

// Consider the following version of Box():
Box(double w, double h, double d) {

this.width = w;
this.height = h;
this.depth = d;

}

// The use of this is redundant, but perfectly correct.

The this Keyword

→ Local variables, including formal parameters to methods, which may overlap with the
names of the class’ instance variables.

→ However, when a local variable has the same name as an instance variable, the local
variable hides the instance variable.

Instance variable hiding

→ This is why width, height, and depth were not used as the names of the parameters to
the Box() constructor inside the Box class. If they had been, then width, for example,
would have referred to the formal parameter, hiding the instance variable width.

→ So two possible ways to resolve any namespace collision:

 Simply use different names1

Use this (because this lets you refer directly to the object, you can use it to resolve any
namespace collisions that might occur between instance variables and local variables)

2

The this Keyword

// Use this to resolve name-space collisions.

Box(double width, double height, double depth) {

this.width = width;
this.height = height;
this.depth = depth;

}

References

R Reference for this topic

Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

Web: Java T Point tutorial
https://www.javatpoint.com/java-tutorial

Web: GeeksforGeeks
https://www.geeksforgeeks.org/java/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

