
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

SEC: Programming in Java

Course Web Page
(www.mkbhandari.com/mkwiki)

OOPs Principles

Outline

Object1

Class2

Encapsulation3

Inheritance5

Abstraction4

Polymorphism6

Object Oriented Programming Languages
Object-Oriented Programming is a methodology or paradigm to design a
program using classes and objects.

The main aim of object-oriented programming is to implement real-world
entities, for example, object, classes, abstraction, inheritance, polymorphism,
etc.

Simula is considered the first object-oriented programming language.

Smalltalk is considered the first truly object-oriented programming language.

The popular object-oriented languages are Java, Python, C++, C#, PHP, etc.

→ Objects interacts among themselves to implement program logic.

Object Oriented Programming Languages
Object-Oriented programming has several advantages over procedural
programming:

→ OOPs makes development and maintenance easier where as in Procedure-Oriented
Programming language it is not easy to manage if code grows as project size grows. The
core concept of the object-oriented approach is to break complex problems into smaller
objects.

→ OOPs provides data hiding whereas in Procedure-Oriented Programming language a
global data can be accessed from anywhere.

→ OOPs provides ability to simulate real-world event much more effectively. We can
provide the solution of real word problem if we are using the Object-Oriented
Programming language.

→ OOP makes it possible to create full reusable applications with less code and shorter
development time

Class
In Java, every small or large program can only be created using a template
called class.

A class is used to create and define objects.

A class consists of data(fields) and code(methods) that operate on that data.

→ Class is a template/blueprint/framework/model from which objects are created. For
example: College, Faculty, Student, Car, Bike, City, Laptop, Mobile, etc.

→ Once a class is created/defined, any number of objects can be created from it.

→ A class is a group of objects which have common properties.

→ The class defines the values the object can contain and the operations that can be
performed on the object.

→ It is a logical entity. It can't be physical.

Class
We can create a class in Java using the class keyword. For example:

class ClassName {

 // fields

 // methods

}

Here, fields (variables) and methods represent the
state and behavior of the object respectively.

fields (variables) are used to store data

methods are used to perform some operations

Class
We can create a class in Java using the class keyword. For example:

class ClassName {

 // fields

 // methods

}

class Student {

 // state or field
 private int rollNumber;

 // behavior or method

public void attemptQuiz() {
 System.out.println("Attempting a Java Quiz");

}
}

Object
Object are basic building blocks in an object oriented programming
languages.

An object is an instance of a class.

An object is a real-world entity that has state and behavior. It can be physical
or logical (tangible and intangible).

→ A class is a template or blueprint from which objects are created. So, an object is the
instance(result) of a class.

An object is a runtime entity and has three characteristics:
State: represents the data (value) of an object.1

Behavior: represents the behavior (functionality) of an object such as deposit,
withdraw, post, share, download, etc.

2

Identity: represents unique ID not visible to the external user, used internally by the
JVM to identify each object uniquely.

3

Object
We can create an Object of a Class in Java as follows:

className object = new className();

// for Student class
Student s1 = new Student();

Student s2 = new Student();

Encapsulation
Encapsulation is a protective mechanism by which member of a class
(methods and variables) are prevented from being accessed by members of
other classes.

A class is an example of encapsulation because a class binds its variables and
methods into a single unit and hides their complexity from other classes.

Variables (fields or data) in a class are generally marked private to prevent
other classes from accessing them.

Methods are created as public that other classes can access.
→ By accessing these public methods, variables can be accessed.
→ This is the only way of interacting with the variables declared private in a class.

Encapsulation - Implementation

class Student{
private String name;
private String course;
public void info(String n, String c){

name=n;
course=c;
System.out.println(name+ ”doing Graduation in :” +course);

}
}

public class EncapsulationDemo{
public static void main(String args[]){

Student s1 = new Student();
s1.info(“Mark Zuckerberg”, “B.Sc.(P) Computer Science”);

}
}

Abstraction
Abstraction is the concept of object-oriented programming that "shows" only
essential attributes and "hides" unnecessary information.

The advantage of abstraction is that the user can work only with the needed
data and is not required to view the unwanted data.

In OOPs, you need to know about the specific classes or methods that are
called to implement specific program logic, without knowing how these
classes or methods function.

Abstraction - Implementation
class Customer{

private int accNo;
private String cName;
private double balance, salary, credit
public void display(int anum, Stiring name, String bal){

accNo=anum;
cName=name;
balance=bal;
System.out.println(”Account Number=”+accNo);
System.out.println(”Customer Name =”+cName);
System.out.println(”Total Balance =”+balance);

}
}
public class AbstractionDemo{

public static void main(String args[]){
Customer c1= new Customer();
c1.display(101,“Sundar Pichai”,60000000);

}
}

Inheritance
Inheritance in Java is a mechanism in which object of one class acquires all
the properties and behaviors of another existing class(parent object). For
example: the BallPointPen class is a subclass of the Pen class.

It is an important part of OOPs (Object Oriented programming system).

It gives the concept (idea) of reusability.

A class that is inherited is called a superclass and the class that inherits the
superclass is called a subclass. (hierarchical classification)

Note: Multiple inheritance is not supported in Java, which means a subclass
can extend only one superclass in Java.

Inheritance - Implementation
class Person{

private String name;
public void setName(Stiring n){

name=n;
}
public void getName(){

System.out.println(”Name : ” +name);\
}

}

public class SportsPerson extends Person{
private String sport;
public void setSport(Stiring sp){

sport = sp;
}
public void getSport(){

System.out.println(”Sport : ” +sport);
}

Inheritance - Implementation

// main method
public static void main(String[] args){

SportsPerson sp = new SportsPerson();

sp.setName(“Rafael Nadal”);
sp.setSport(“Lawn Tennis”);

sp.getName();
sp.getSpor();

}

Polymorphism
Polymorphism is the ability of an object to take on many forms.

In OOPs, Polymorphism allows you to perform various operations by using
methods with the same name.

In Java, Polymorphism is performed by changing the implementation of the
method.

Polymorphism can be divided into the following two types:
Static (compile time) polymorphism: - The behavior of the method is decided during
compilation. (method overloading)

1

Dynamic (run time) polymorphism: - The behavior of the method is decided during
runtime. (method overriding)

2

The type of Polymorphism depends on how the method is invoked in a class.

Implementing the static Polymorphism
class StaticPoly{

void product(int x, int y){
System.out.println(”Product of two numbers: ” +(x*y));

}

void product(int x, int y, int z){
System.out.println(”Product of three numbers: ” +(x*y*z));

}

public static void main(String args[]){

StaticPoly obj=new StaticPoly();
obj.product(10,20);
obj.product(10,20,30);

}
}

Implementing the dynamic Polymorphism
class A{

static void calc(double x){
System.out.println(”Square of the given value: ” +(x*x));

}
}
class B extends A{

static void calc(double x){
double y=5;
System.out.println(”Area of the rectangle: ” +(x*y));

}
}
public class DynamicPoly{

public static void main(String args[]){
A a=new B();
a.calc(5);
B b=new B();
b.calc(6);

}
}

References

R Reference for this topic

Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt1

Web: https://www.tutorialspoint.com/java/index.htm2

Web: https://www.javatpoint.com/java-tutorial3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

