
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

SEC: Android Programming

Course Web Page
(www.mkbhandari.com/mkwiki)

Introduction



Outline

History of Android1

Introduction to Android Operating System2

Android Architecture3

Android Fundamental Components (Core Building Blocks)4



History of Android
From its inaugural release to today, Android has transformed visually, 
conceptually and functionally.

Let's understand the android history in a sequence.

→ Initially, Andy Rubin founded Android Incorporation in Palo Alto, California, United States in 
October, 2003.

In 17th August 2005, Google acquired Android Incorporation. Since then, it is in the 
subsidiary of Google Incorporation.

→ The key employees of Android Incorporation are Andy Rubin, Rich Miner, Chris White and 
Nick Sears.

→

→ Originally intended for camera but shifted to smart phones later because of low market 
for camera only.



History of Android

→ Android is the nick name of Andy Rubin given by coworkers because of his love to 
robots.

→ In 2007, Google announces the development of Android OS.

→ In 2008, HTC launched the first Android mobile (T-Mobile G1).

Open Handset Alliance(OHA)

→ It's a consortium of 84 companies such as google, samsung, AKM, synaptics, KDDI, 
Garmin, Teleca, Ebay, Intel etc.

→ It was established on 5th November, 2007, led by Google. It is committed to advance 
open standards, provide services and deploy handsets using the Android Platform.



History of Android – Versions, Codename, API Level

 [2]



Introduction to Android Operating System
Android is a mobile operating system based on a modified version of the 
Linux kernel and other open source software, designed primarily for 
touchscreen mobile devices such as smartphones and tablets. 

Android is written in Java (UI), C (core), C++ and others. 

Android is developed by a consortium of developers known as the Open 
Handset Alliance and commercially sponsored by Google.



Introduction to Android Operating System

It was unveiled in November 2007, with the first commercial Android device 
launched in September 2008.

It is free and open source software; its source code is known as Android 
Open Source Project (AOSP), which is primarily licensed under the Apache 
License.

However most Android devices ship with additional proprietary software pre-
installed, most notably Google Mobile Services (GMS) which includes core 
apps such as  Google Chrome, the digital distribution platform Google Play 
and associated Google Play Services development platform.



Introduction to Android Operating System

About 70 percent of Android smartphones run Google's ecosystem

The "Android" name and logo are trademarks of Google which impose 
standards to restrict "uncertified" devices outside their ecosystem to use 
Android branding.

The source code has been used to develop variants of Android on a range of 
other electronics, such as game consoles, digital cameras, portable media 
players, PCs and others, each with a specialized user interface.

Some well known derivatives include Android TV for televisions and Wear OS 
for wearables, both developed by Google.



Introduction to Android Operating System

As of May 2017, it has over two billion monthly active users, the largest 
installed base of any operating system

As of August 2020, the Google Play Store features over 3 million apps.

The current stable version is Android 11, released on September 8, 2020.

Android has been the best-selling OS worldwide on smartphones since 2011 
and on tablets since 2013.

The goal of android project is to create a successful real-world product that 
improves the mobile experience for end users.



Why Android?

 
[3]



Features of Android

Beautiful UI :  
Android OS basic screen provides a beautiful and intuitive user interface.

1

Connectivity :  
GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE, NFC and WiMAX.

2

Storage :  
SQLite, a lightweight relational database, is used for data storage purposes.

3

Media support :  
H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC, AAC 5.1, MP3, MIDI, Ogg  

        Vorbis, WAV, JPEG, PNG, GIF, and BMP.

4

Messaging :  
SMS and MMS.

5



Features of Android

Web Browser :  
Based on the open-source WebKit layout engine, coupled with Chrome's V8           

        JavaScript engine supporting HTML5 and CSS3

6

Multi-touch :  
Android has native support for multi-touch which was initially made available in 

       handsets such as the HTC Hero.

7

Multi-tasking :  
User can jump from one task to another and same time various application can  

        run simultaneously.

8

Resizable widgets :  
Widgets are resizable, so users can expand them to show more content or shrink 

        them to save space.

9



Features of Android

Multi-Language :  
Supports single direction and bi-directional text.

10

GCM :  
Google Cloud Messaging (GCM) is a service that lets developers send short             

        message data to their users on Android devices, without needing a proprietary    
        sync solution.

11

Wi-Fi Direct :  
A technology that lets apps discover and pair directly, over a high-bandwidth       

        peer-to-peer connection.

12

Android Beam :  
A popular NFC-based technology that lets users instantly share, just by touching  

         two NFC-enabled phones together.

13



Android Applications
Many, to almost all, Android devices come with preinstalled Google apps 
including Gmail, Google Maps, Google Chrome, YouTube, Google Play Music, 
Google Play Movies & TV, and many more.

Applications ("apps"), are written using the Android software development kit 
(SDK). 

Kotlin programming language was originally announced in May 2017, which 
replaced Java as Google's preferred language for Android app development 
in May 2019.

Java is still supported (originally the only option for user-space programs, 
and is often mixed with Kotlin), as is C++.

Java and/or other JVM languages, such as Kotlin, may be combined with C/  
C++.



Android Applications
Once developed, Android applications can be packaged easily and sold out 
either through a store such as: 

→ Google 
Play

→ SlideME

→ Opera Mobile Store

→ Mobango

→ F-droid

→ Amazon Appstore



Categories of Android Applications
There are many android applications in the market. The top categories are 

 
[3]



Android Architecture

Android is an open source, Linux-based software stack created for a wide 
array of devices and form factors. 

1

2

3

4

5

Linux Kernel

Native Libraries (middleware)

Android Runtime

Application Framework (Java API Framework)

Applications (System Apps)

Android architecture or Android software stack is categorized into five parts:



Android Architecture

[3]



Linux Kernel

The foundation of the Android platform is the Linux kernel.

Device drivers

It is the heart of android architecture that exists at the root of android 
architecture. 

Linux kernel is responsible for

→

Power Management→

Memory Management→

Device Management→

Resource Access→



Native C/C++ Libraries

On the top of Linux kernel, their are Native libraries such as :
→ Webkit - for browser support ( open source web browser )

→ OpenGL – graphics library used to produce 2D/3D computer graphics (cross-
language, cross-platform)

→ FreeType – for font support

→ SQLite – for database 

→ Media – for playing and recording audio and video formats. 

→ Libc - C runtime library

→ SSL – for internet security



Android Runtime (ART)

The third section of the architecture - which is responsible to run Android application.

Available on the second layer from the bottom.

ART provides a key component called Dalvik Virtual Machine (DVM), a kind of JVM 
specially designed and optimized for Android.

DVM make use of Linux core features like memory management and multithreading 
which are integral part of Java language.

DVM enables every Android application to run in its own process, with its own 
instance of DVM.

In addition to DVM, ART also provides a set of core libraries that enables Android app 
developers to write/develop Android apps using standard Java Language



Android Runtime (ART) – Core Libraries



Application (Java API) Framework
On the top of Native libraries and Android runtime, there is Application 
framework

App developers are allowed to make use of these services in their 
applications.

Application framework provides many higher-level services to applications in 
the form of Java classes.

Application framework includes Android API's such as UI (User Interface), 
telephony, resources, locations, Content Providers (data) and package 
managers.



Application (Java API) Framework

Content Providers: Allows apps to publish & share data with other apps.2

Resource Manager: Provides access to non-code embedded resources such as 
strings,color settings, and user interface layouts.

3

Notification Manager: Allows apps to display alerts & notifications to the users.4

View System: An extensible set of views used to create application UI’s 5

Location Manager: Finds the device’s geographic locations.6

Activity Manager: Controls all aspects of the application life-cycle & activity stack.1

Key services are:



Applications

On the top of android framework, there are applications.

All applications such as home, contact, settings, games, browsers are using 
Application Framework that uses Android Runtime and Native Libraries.

Android Runtime and Native Libraries are using Linux Kernel.

The pre-installed applications like home, contacts, camera, gallery etc and 
third party applications downloaded from the play store like chat 
applications, games etc. will be installed on this layer only.

App developers can only develop applications for this layer.



Android Core Building Blocks

An Android component is simply a piece of code that has a well defined life 
cycle e.g. Activity, Receiver, Service etc.

1

2

3

4

5

Activities

Views 

Intents and Broadcast Receivers

Services

Content Providers

The core building blocks or fundamental components of Android are :

6 Fragments

7 AndroidManifest.xml



Android Core Building Blocks

[4]



Activity
An activity is the entry point for interacting with the user. It represents a 
single screen with a user interface.

For example: An email app might have one activity that shows a list of new 
emails, another activity to compose an email, and another activity for reading 
emails.

→

Although the activities work together to form a cohesive user experience in 
the email app, each one is independent of the others.

As such, a different app can start any one of these activities if the email app 
allows it. 

→

For example, a camera app can start the activity in the email app that 
composes new mail to allow the user to share a picture.

→



Activity
An activity facilitates the following key interactions between system and app:

Keeping track of what the user currently cares about (what is on screen) to 
ensure that the system keeps running the process that is hosting the activity.

→

Knowing that previously used processes contain things the user may return to 
(stopped activities), and thus more highly prioritize keeping those processes 
around.

→

Helping the app handle having its process killed so the user can return to 
activities with their previous state restored.

→

Providing a way for apps to implement user flows between each other, and for 
the system to coordinate these flows. (The most classic example here being 
share.)

→



Activity

An activity is a class that represents a single screen. It is like a Frame in AWT

Generally, an Android app has more than one activity. 

The first stepping stone in building an Android user app.

There is one “main” activity, and all other activities are “child” activities.→

An activity is implemented as a subclass of class Activity.

public class MainActivity extends Activity {

//do something

}



Activity
A task is a collection of activities that users interact with when performing a 
certain job. For example: Buying a product (mobile phone) from Amazon app. 

The activities are arranged in a stack (the Back Stack) in the order in which 
each activity is opened.

A representation of how each new activity in a task adds an item to the back stack. When the user presses the Back button, the 
current activity is destroyed and the previous activity resumes. [5]



Activity Lifecycle
As a user navigates through, out of, and back to your app, the Activity 
instances in your app transition through different states in their lifecycle.

The Activity class provides a number of callbacks that allow the activity to 
know that a state has changed: that the system is creating, stopping, or 
resuming an activity, or destroying the process in which the activity resides.

Within the lifecycle callback methods, you can declare how your activity 
behaves when the user leaves and re-enters the activity.

For example, if you're building a streaming video player, you might pause the video 
and terminate the network connection when the user switches to another app. 
When the user returns, you can reconnect to the network and allow the user to 
resume the video from the same spot.

→



Activity Lifecycle

Doing the right work at the right time and handling transitions properly make 
your app more robust and performant.

For example, good implementation of the lifecycle callbacks can help ensure 
that your app avoids:

Crashing if the user receives a phone call or switches to another app while using 
your app.

→

Each callback allows you to perform specific work that's appropriate to a 
given change of state.

Consuming valuable system resources when the user is not actively using it.→

Losing the user's progress if they leave your app and return to it at a later time.→

Crashing or losing the user's progress when the screen rotates between landscape 
and portrait orientation.

→



Activity Lifecycle
In C, C++, or Java program starts from main( ) function.

Very similar way, Android system initiates its program with in an Activity 
starting with a call on onCreate( ) callback method.

There is a sequence of callback methods that start up an activity and a 
sequence of callback methods that tear down an activity as shown in the 
Activity life cycle diagram (in next slide):



A simplified illustration of the activity lifecycle. [5]



Activity Lifecycle
To navigate transitions between stages of the activity lifecycle, the Activity 
class provides a core set of six callbacks:

onCreate( ) : This is the first callback and called when the activity is first created.1

onStart( ) : This callback is called when the activity becomes visible to the user.2

onResume( ) : This is called when the user starts interacting with the application.3

onPause( ) : The paused activity does not receive user input and cannot execute 
any code and called when the current activity is being paused and the previous 
activity is being resumed.

4

onStop( ) : This callback is called when the activity is no longer visible.5

onDestroy( ) : This callback is called before the activity is destroyed by the system.6

The system invokes each of these callbacks as an activity enters a new state.



Activity Lifecycle - Summary
Open/Launch app – onCreate( ), onStart( ), onResume( )

Minimize app – onPause( ), onStop( )

Recent apps (Go back to app after minimize) – onRestart( ), onStart( ), 
onResume( )

Close app - onPause( ), onStop( ), onDestroy( )



References

R Reference for this topic

Book: Android application development for java programmers. By James C. Sheusi. 
Publisher: Cengage Learning, 2013.

Web: https://en.wikipedia.org/wiki/Android_version_history

1

2

Web: https://www.tutorialspoint.com/android/android_overview.htm3

Web: https://www.javatpoint.com/android-tutorial4

Web: https://developer.android.com/guide/components/activities5


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

