
Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 20: Event Handling and AWT

Course webpage
[http://www.mkbhandari.com/mkwiki]

Programming in Java

http://www.mkbhandari.com/mkwiki

Outline

The AWT class hierarchy1

The Delegation Event Model2

Event sources4

Event classes5

Event Listeners6

Relationship between Event sources and Listeners7

Creating GUI applications using AWT8

Events3

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based
applications in java.

The AWT(Abstract Window Toolkit)

Java AWT components are platform-dependent i.e. components are displayed
according to the view of operating system. AWT is heavyweight i.e. its components
are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label,
TextArea, RadioButton, CheckBox, Choice, List etc.

The AWT class Hierarchy

The AWT class Hierarchy
Component1

Components are elementary GUI entities, such as Button, Label, and TextField, etc.

In AWT we have classes for each component

Container (a screen wherein we are placing components)2

To have everything placed on a screen to a particular position, we have to add them to a
container.

Containers, such as Frame and Panel, are used to hold components like buttons, text fields,
checkbox etc., in a specific layout (such as FlowLayout or GridLayout)

In short a container contains and controls the layout of components.

A container itself is a component (as shown in the AWT hierarchy diagram) thus we can add a
container inside container.

There are four types of containers available in AWT

The AWT class Hierarchy
Containers and Components

The AWT class Hierarchy
AWT provides many ready-made and reusable GUI components in package java.awt.

The AWT class Hierarchy
Window3

The window is the container that have no borders and menu bars. You must use frame,
dialog or another window for creating a window.

Panel4

The Panel is the container that doesn't contain title bar and menu bars. It can have other
components like button, textfield etc.

Dialog6

Dialog class has border and title. An instance of the Dialog class cannot exist without an
associated instance of the Frame class.

Frame5

The Frame is the container that contain title bar and can have menu bars. It can have other
components like button, textfield etc.

Java adopts the so-called "Event-Driven" (or "Event-Delegation") programming model
for event-handling, which defines standard and consistent mechanisms to generate
and process events.

The Delegation Event Model

The advantage of this design is that the application logic that processes events is
cleanly separated from the user interface logic that generates those events.

A source generates an event and sends it to one or more listeners. In this scheme, the
listener simply waits until it receives an event.

Its concept is quite simple:

A user interface element is able to “delegate” the processing of an event to a separate
piece of code.

Once an event is received, the listener processes the event and then returns.

In the delegation event model, listeners must register with a source in order to
receive an event notification (The benefit is notifications are sent only to listeners that
want to receive them)

The Delegation Event Model

The Delegation Event Model

In the delegation model, an event is an object that describes a state change in a
source (changing the state of an object is known as an event).

Events

Button press

An event can be generated as a consequence of a person interacting with the
elements in a graphical user interface. Some of the activities that cause events to be
generated are:

Events may also occur that are not directly caused by interactions with a user
interface.

Key press
Selecting an item in a list
Mouse click

Timer expires
Counter exceed a value
Software/Hardware failure
Completion of an operation

A source is an object that generates an event. This occurs when the internal state of
that object changes in some way.

Event Sources

Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications
about a specific type of event. Each type of event has its own registration method.
Here is the general form:

public void addTypeListener (TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For
example:

addKeyListener() method registers a keyboard event listener.
addMouseMotionListener() method registers a registers a mouse motion listener.

-> multicasting*

When an event occurs, all registered listeners are notified and receive a copy of the
event object. This is known as multicasting the event.

Event Sources

In all cases, notifications are sent only to listeners that register to receive them.

Some sources may allow only one listener to register. The general form of such a
method is this:

public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException

Here, Type is the name of the event, and el is a reference to the event listener.

When such an event occurs, the registered listener is notified. This is known as
unicasting the event.

-> unicasting*

A source must also provide a method that allows a listener to unregister an interest
in a specific type of event. The general form of such a method is this:

Event Sources

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For
example:

The methods that add or remove listeners are provided by the source that generates
Events.

For example, the Component class provides methods to add and remove keyboard
and mouse event listeners.

removeKeyListener() method is called to remove a keyboard listener.

-> unregister*

A listener is an object that is notified when an event occurs.

Event Listeners

It has two major requirements.

The methods that receive and process events are defined in a set of interfaces, such
as those found in java.awt.event.

It must have been registered with one or more sources to receive notifications about
specific types of events.

1

It must implement methods to receive and process these notifications.2

The classes that represent events are at the core of Java’s event handling mechanism.

Event Classes

At the root of the Java event class hierarchy is EventObject, which is in java.util. It is
the superclass for all events. Its one constructor is shown here:

Here, src is the object that generates this event.

toString() returns the string equivalent of the event.2

EventObject(Object src)

EventObject defines two methods:

getSource() method returns the source of the event. Its general form is shown here:1

Object getSource()

The class AWTEvent, defined within the java.awt package, is a subclass of
EventObject.

Event Classes

The getID() method can be used to determine the type of the event. The signature of
this method is shown here:

EventObject is a superclass of all events.

The class AWTEvent, is the superclass (either directly or indirectly) of all AWT-based
events used by the delegation event model.

int getID()

To summarize:

AWTEvent is a superclass of all AWT events that are handled by the delegation event model.

The package java.awt.event defines many types of events that are generated by
various user interface elements.

Event Classes

An ActionEvent is generated when a button is pressed, a list item is double-clicked,
or a menu item is selected.

1. The ActionEvent Class

The ActionEvent class defines four integer constants that can be used to identify any
modifiers associated with an action event:

-> button press*

ALT_MASK

CTRL_MASK

META_MASK, and

In addition, there is an integer constant, ACTION_PERFORMED, which can be used to
identify action events.

SHIFT_MASK.

1. The ActionEvent Class
ActionEvent has these three constructors:

Here, src is a reference to the object that generated this event.

ActionEvent(Object src, int type, String cmd)
ActionEvent(Object src, int type, String cmd, int modifiers)
ActionEvent(Object src, int type, String cmd, long when, int modifiers)

The type of the event is specified by type, and its command string is cmd.

The argument modifiers indicates which modifier keys (alt, ctrl, meta, and/or shift) were pressed
when the event was generated

The when parameter specifies when the event occurred.

-> button press*

You can obtain the command name for the invoking ActionEvent object by using the
getActionCommand() method, shown here:

1. The ActionEvent Class

For example, when a button is pressed, an action event is generated that has a
command name equal to the label on that button.

String getActionCommand()

The getModifiers() method returns a value that indicates which modifier keys (alt,
ctrl, meta, and/or shift) were pressed when the event was generated. Its form is
shown here:

int getModifiers()

The method getWhen() returns the time at which the event took place. This is called
the event’s timestamp. The getWhen() method is shown here:

long getWhen()
-> button press*

An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment
events. The AdjustmentEvent class defines integer constants that can be used to
identify them.

2. The AdjustmentEvent Class

In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED, that
indicates that a change has occurred.

-> scroll bar*

AdjustmentEvent class has one constructor:

2. The AdjustmentEvent Class

The getAdjustable() method returns the object that generated the event. Its form is
shown here:

Here, src is a reference to the object that generated this event.

AdjustmentEvent(Adjustable src, int id, int type, int val)

-> scroll bar*

The id specifies the event.
The type of the adjustment is specified by type, and Its associated value is val.

Adjustable getAdjustable()

The type of the adjustment event may be obtained by the getAdjustmentType()
method. It returns one of the constants defined by AdjustmentEvent. The general
form is shown here:

2. The AdjustmentEvent Class

AdjustmentEvent(Adjustable src, int id, int type, int val)

-> scroll bar*

The amount of the adjustment can be obtained from the getValue() method, shown
here:

int getValue()

A ComponentEvent is generated when the size, position, or visibility of a
component is changed.

3. The ComponentEvent Class

-> size, position, visibility*

There are four types of component events. The ComponentEvent class defines integer
constants that can be used to identify them.

ComponentEvent(Component src, int type)

ComponentEvent has one constructor:

Here, src is a reference to the object that generated this event. The type of the event
is specified by type.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,
FocusEvent, KeyEvent, MouseEvent, and WindowEvent, among others.

3. The ComponentEvent Class

-> size, position, visibility*

The getComponent() method returns the component that generated the event. It is
shown here:

Component getComponent()

A ContainerEvent is generated when a component is added to or removed from a
container.

4. The ContainerEvent Class

-> added or removed*

There are two types of container events. The ContainerEvent class defines int
constants that can be used to identify them:

indicate that a component has been added to or removed from the container.

ContainerEvent(Component src, int type, Component comp)

COMPONENT_ADDED
COMPONENT_REMOVED

ContainerEvent is a subclass of ComponentEvent and has one constructor:

Here, src is a reference to the container that generated this event.
The type of the event is specified by type, and the component that has been added to
or removed from the container is comp.

You can obtain a reference to the container that generated this event by using the
getContainer() method, shown here:

4. The ContainerEvent Class

-> added or removed*

Container getContainer()

The getChild() method returns a reference to the component that was added to or
removed from the container. Its general form is shown here:

Component getChild()

A FocusEvent is generated when a component gains or loses input focus. These
events are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

5. The FocusEvent Class

-> Focus gain or lost*

FocusEvent(Component src, int type)
FocusEvent(Component src, int type, boolean temporaryFlag)
FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

A FocusEvent is a subclass of ComponentEvent and has these constructors:

Here, src is a reference to the component that generated this event.
The type of the event is specified by type.
The argument temporaryFlag is set to true if the focus event is temporary.
Otherwise, it is set to false.

The other component involved in the focus change, called the opposite component, is
passed in other. Therefore, if a FOCUS_GAINED event occurred, other will refer to the
component that lost focus. Conversely, if a FOCUS_LOST event occurred, other will
refer to the component that gains focus.

You can determine the other component by calling getOppositeComponent(),
shown here:

The opposite component is returned.

5. The FocusEvent Class

-> Focus gain or lost*

Component getOppositeComponent()

The isTemporary() method indicates if this focus change is temporary. Its form is
shown here:

The method returns true if the change is temporary. Otherwise, it returns false.

boolean isTemporary()

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass
for component input events. Its subclasses are KeyEvent and MouseEvent.

6. The InputEvent Class

-> Focus gain or lost*

InputEvent defines several integer constants that represent any modifiers, such as
the control key being pressed, that might be associated with the event.

Originally, the InputEvent class defined the following eight values to represent the
modifiers:

Extended modifiers

To test if a modifier was pressed at the time an event is generated, use the
isAltDown(), isAltGraphDown(), isControlDown(), isMetaDown(), and
isShiftDown() methods. The forms of these methods are shown here:

6. The InputEvent Class

-> Focus gain or lost*

boolean isAltDown()
boolean isAltGraphDown()
boolean isControlDown()
boolean isMetaDown()
boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling the
getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by calling getModifiersEx(), which is shown
here:

int getModifiersEx()

An ItemEvent is generated when a check box or a list item is clicked or when a
checkable menu item is selected or deselected.

7. The ItemEvent Class

-> check box or list item*

There are two types of item events, which are identified by the following integer
constants:

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that
signifies a change of state. ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event.
The type of the event is specified by type.
The specific item that generated the item event is passed in entry.
The current state of that item is in state.

The getItem() method can be used to obtain a reference to the item that changed.
Its signature is shown here:

7. The ItemEvent Class

-> check box or list item*

The getItemSelectable() method can be used to obtain a reference to the
ItemSelectable object that generated an event. Its general form is shown here:

Object getItem()

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the
ItemSelectable interface.

ItemSelectable getItemSelectable()

The getStateChange() method returns the state change (that is, SELECTED or
DESELECTED) for the event. It is shown here:

int getStateChange()

A KeyEvent is generated when keyboard input occurs.

8. The KeyEvent Class

-> keyboard input*

There are three types of key events, which are identified by these integer constants:
KEY_PRESSED, KEY_RELEASED, and KEY_TYPED.

There are many other integer constants that are defined by KeyEvent. For example,
VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the
numbers and letters. Here are some others:

The VK constants specify virtual key codes and are independent of any modifiers,
such as control, shift, or alt.

8. The KeyEvent Class

-> keyboard input*

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)
KeyEvent is a subclass of InputEvent. Here is one of its constructors:

Here, src is a reference to the component that generated this event.

The type of the event is specified by type.

The system time at which the key was pressed is passed in when.

The modifiers argument indicates which modifiers were pressed when this key event
occurred.

The virtual key code, such as VK_UP, VK_A, and so forth, is passed in code.

The character equivalent (if one exists) is passed in ch. If no valid character exists,
then ch contains CHAR_UNDEFINED. For KEY_TYPED events, code will contain
VK_UNDEFINED.

8. The KeyEvent Class

-> keyboard input*

char getKeyChar()
int getKeyCode()

The KeyEvent class defines several methods, but probably the most commonly used
ones are getKeyChar(), which returns the character that was entered, and
getKeyCode(), which returns the key code. Their general forms are shown here:

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.
When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

9. The MouseEvent Class

-> mouse event*

There are eight types of mouse events. The MouseEvent class defines the following
integer constants that can be used to identify them:

9. The MouseEvent Class

-> mouse event*

MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers,
int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event.
The type of the event is specified by type.
The system time at which the mouse event occurred is passed in when.
The modifiers argument indicates which modifiers were pressed when a mouse
event occurred.
The coordinates of the mouse are passed in x and y.
The click count is passed in clicks.
The triggersPopup flag indicates if this event causes a pop-up menu to appear on this
platform.

9. The MouseEvent Class

-> mouse event*

Two commonly used methods in this class are getX() and getY(). These return the X
and Y coordinates of the mouse within the component when the event occurred.
Their forms are shown here:

int getX()
int getY()

The getPoint() method is used to obtain the coordinates of the mouse. It is shown
here:

It returns a Point object that contains the X,Y coordinates in its integer members: x
and y.

Point getPoint()

The translatePoint() method changes the location of the event. It is shown here:

Here, the arguments x and y are added to the coordinates of the event.

void translatePoint(int x, int y)

9. The MouseEvent Class

-> mouse event*

The isPopupTrigger() method tests if this event causes a pop-up menu to appear on
this platform. Its form is shown here:

boolean isPopupTrigger()

The getButton() method returns a value that represents the button that caused the
event.

For most cases, the return value will be one of these constants defined by MouseEvent:
NOBUTTON, BUTTON1, BUTTON2, and BUTTON3

int getButton()

The getClickCount() method obtains the number of mouse clicks for this event. Its
signature is shown here:

int getClickCount()

The NOBUTTON value indicates that no button was pressed or released.

9. The MouseEvent Class

-> mouse event*

The three methods that obtain the coordinates of the mouse relative to the screen
rather than the component. They are shown here:

Point getLocationOnScreen()
int getXOnScreen()
int getYOnScreen()

The getLocationOnScreen() method returns a Point object that contains both the X
and Y coordinate. The other two methods return the indicated coordinate.

10. The TextEvent Class

-> text field/area*

Instances of this class describe text events. These are generated by text fields and
text areas when characters are entered by a user or program.

TextEvent(Object src, int type)

TextEvent defines the integer constant TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

Here, src is a reference to the object that generated this event. The type of the event
is specified by type.

11. The WindowEvent Class

-> window events*

There are 10 types of window events, the WindowEvent class defines integer
constants that can be used to identify them.

The constants and their meanings are shown here:

11. The WindowEvent Class

-> text field/area*

WindowEvent is a subclass of ComponentEvent. It defines several constructors.

Here, src is a reference to the object that generated this event. The type of the event
is type.

WindowEvent(Window src, int type)
WindowEvent(Window src, int type, Window other)
WindowEvent(Window src, int type, int fromState, int toState)
WindowEvent(Window src, int type, Window other, int fromState, int toState)

Here, other specifies the opposite window when a focus or activation event occurs.
The fromState specifies the prior state of the window, and toState specifies the new
state that the window will have when a window state change occurs.

A commonly used method in this class is getWindow(). It returns the Window object
that generated the event. Its general form is shown here:

Window getWindow()

11. The WindowEvent Class

-> text field/area*

WindowEvent also defines methods that return the opposite window (when a focus
or activation event has occurred), the previous window state, and the current window
state. These methods are shown here:

Window getOppositeWindow()
int getOldState()
int getNewState()

Sources of Events
In addition to the graphical user interface elements, any class derived from
Component, such as Applet, can generate events.

Event Listener Interfaces
The delegation event model has two parts: sources and listeners.

Listeners are created by implementing one or more of the interfaces defined by the
java.awt.event package.

When an event occurs, the event source invokes the appropriate method
defined by the listener and provides an event object as its argument.

Event Listener Interfaces

The specific methods in each interface
The ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an action event
occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface
This interface defines the adjustmentValueChanged() method that is invoked when an
adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ItemListener Interface
This interface defines the itemStateChanged() method that is invoked when the state of an
item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The specific methods in each interface
The ComponentListener Interface

This interface defines four methods that are invoked when a component is resized, moved,
shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)
void componentMoved(ComponentEvent ce)
void componentShown(ComponentEvent ce)
void componentHidden(ComponentEvent ce)

The ContainerListener Interface
This interface contains two methods. When a component is added to a container,
componentAdded() is invoked. When a component is removed from a container,
componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)
void componentRemoved(ContainerEvent ce)

The specific methods in each interface
The FocusListener Interface

This interface defines two methods. When a component obtains keyboard focus,
focusGained() is invoked. When a component loses keyboard focus, focusLost() is called.
Their general forms are shown here:

void focusGained(FocusEvent fe)
void focusLost(FocusEvent fe)

The KeyListener Interface
This interface defines three methods. The keyPressed() and keyReleased() methods are
invoked when a key is pressed and released, respectively. The keyTyped() method is
invoked when a character has been entered. The general forms of these methods are shown
here:

void keyPressed(KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)

The specific methods in each interface
The MouseListener Interface

This interface defines five methods. (1) If the mouse is pressed and released at the same
point, mouseClicked() is invoked. (2) When the mouse enters a component, the
mouseEntered() method is called. (3) When it leaves, mouseExited() is called. (4 & 5) The
mousePressed() and mouseReleased() methods are invoked when the mouse is pressed
and released, respectively.

void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

The specific methods in each interface
The MouseMotionListener Interface

This interface defines two methods. The mouseDragged() method is called multiple times
as the mouse is dragged. The mouseMoved() method is called multiple times as the mouse
is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)
void mouseMoved(MouseEvent me)

The TextListener Interface
This interface defines the textValueChanged() method that is invoked when a change
occurs in a text area or text field. Its general form is shown here:

void textValueChanged(TextEvent te)

The specific methods in each interface
The WindowFocusListener Interface

This interface defines two methods: windowGainedFocus() and windowLostFocus().
These are called when a window gains or loses input focus. Their general forms are shown
here:

void windowGainedFocus(WindowEvent we)
void windowLostFocus(WindowEvent we)

This interface defines seven methods. The windowActivated() and windowDeactivated()
methods are invoked when a window is activated or deactivated, respectively. If a window is
iconified, the windowIconified() method is called. When a window is deiconified, the
windowDeiconified() method is called. When a window is opened or closed, the
windowOpened() or windowClosed() methods are called, respectively. The
windowClosing() method is called when a window is being closed. The general forms of
these methods are: (go to next slide)

The WindowListener Interface

The specific methods in each interface

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Using the Delegation Event Model

Implement the appropriate interface in the listener so that it can receive the type of event
desired.

Using the delegation event model is actually quite easy. Just follow these two
steps:

1

Implement code to register and unregister (if necessary) the listener as a recipient for the
event notifications.

2

A source may generate several types of events. Each event must be registered
separately.

An object may register to receive several types of events, but it must implement all of
the interfaces that are required to receive these events.

Event Handling Few Sample Questions

Write different constants and their description available in AdjustmentEvent class.1

Write different constants and their description available in ComponentEvent class.2

Explain syntax of all constructors available in ContainerEvent and FocusEvent class.3

Write the name of constants present in InputEvent class.4

List all the constants present in KeyEvent class.5

List all the constants present in MouseEvent class.6

List all the constants and their meaning present in WindowEvent class.7

Creating GUI applications using AWT

https://www.youtube.com/watch?v=PDzltlkenhw&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfP
DAf&index=1

Kindly attend following 7 lectures on the youtube for AWT

1

https://www.youtube.com/watch?v=eBhf79VAYfs&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfP
DAf&index=2

2

https://www.youtube.com/watch?v=tAbaDO0fgQs&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfP
DAf&index=3

3

https://www.youtube.com/watch?v=3kjUqmmSyzo&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_Ff
PDAf&index=4

4

https://www.youtube.com/watch?v=SZ0qwp6FRLA&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_Ff
PDAf&index=5

5

https://www.youtube.com/watch?v=OSRJ4rPDA5g&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfP
DAf&index=6

6

https://www.youtube.com/watch?v=q0M9qBqc3YU&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_Ff
PDAf&index=7

7

https://www.youtube.com/watch?v=PDzltlkenhw&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=1
https://www.youtube.com/watch?v=PDzltlkenhw&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=1
https://www.youtube.com/watch?v=eBhf79VAYfs&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=2
https://www.youtube.com/watch?v=eBhf79VAYfs&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=2
https://www.youtube.com/watch?v=tAbaDO0fgQs&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=3
https://www.youtube.com/watch?v=tAbaDO0fgQs&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=3
https://www.youtube.com/watch?v=3kjUqmmSyzo&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=4
https://www.youtube.com/watch?v=3kjUqmmSyzo&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=4
https://www.youtube.com/watch?v=SZ0qwp6FRLA&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=5
https://www.youtube.com/watch?v=SZ0qwp6FRLA&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=5
https://www.youtube.com/watch?v=OSRJ4rPDA5g&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=6
https://www.youtube.com/watch?v=OSRJ4rPDA5g&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=6
https://www.youtube.com/watch?v=q0M9qBqc3YU&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=7
https://www.youtube.com/watch?v=q0M9qBqc3YU&list=PLPHs5nuslqFQu2TVWHzeIoU-tf_FfPDAf&index=7

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

