
Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 17: I/O and Applets

Course webpage
[http://www.mkbhandari.com/mkwiki]

Programming in Java

http://www.mkbhandari.com/mkwiki

Outline

I/O Stream Basics1

Byte Stream and Character Stream2

The Predefined Stream3

Reading Console Input4

Writing Console Output5

Reading and Writing Files6

Applet Fundamentals7

Java I/O (Input and Output) is used to process the input and produce the output. Java
programs perform I/O through streams.

A stream is a sequence of data. A stream is an abstraction that either produces or
consumes information.

I/O Basics - Streams

A stream is linked to a physical device by the Java I/O system.

All streams behave in the same manner, even if the actual physical devices to which
they are linked differ. Thus, the same I/O classes and methods can be applied to
different types of devices.

An input stream can abstract many different kinds of input:
Disk file Keyboard Network socket

An output stream may refer to:
Disk file Console (Monitor) Network connection

I/O Basics - Streams

(keyboard)
computer

screen

[Source: (3)]

Java application uses an input stream to read data from a source

Java application uses an output stream to write data to a destination

Streams are a clean way to deal with input/output without having every part of your
code understand the difference between a keyboard and a network

I/O Basics - Streams

The java.io package contains all the classes required for input and output operations.

In addition to the stream-based I/O defined in java.io, Java also provides buffer- and
channel- based I/O, which is defined in java.nio and its subpackages.

Java defines two types of streams:
byte
character

We can perform file handling in Java by Java I/O API.

Byte streams

Byte Streams and Character Streams

They use Unicode and, therefore, can be internationalized. Also, in some cases, character streams
are more efficient than byte streams.

Character streams

Provide a convenient means for handling input and output of bytes (8-bits).
Used, for example, when reading or writing binary data.

Provide a convenient means for handling input and output of characters.

Using these you can store characters, videos, audios, images etc.

Character Stream classes are topped by Reader and Writer class

At the lowest level, all I/O is still byte-oriented. The character-based streams simply
provide a convenient and efficient means for handling characters.

Byte Stream classes are topped by‐ InputStream and OutputStream classes

Using these you can read and write text data only.

Byte streams are defined by using two class hierarchies. At the top are two abstract
classes:

The Byte Stream Classes

Each of these abstract classes has several concrete subclasses that handle the
differences among various devices, such as disk files, network connections, and even
memory buffers.

InputStream

OutputStream

The abstract classes InputStream and OutputStream define several key methods that
the other stream classes implement.

Two of the most important are read() and write(), which, respectively, read and write
bytes of data. Each has a form that is abstract and must be overridden by derived
stream classes.

The Byte Stream Classes

[Source: (3)]

The Byte Stream Classes

[Source: (3)]

The Byte Stream Classes
The byte stream
classes in java.io

Character streams are defined by using two class hierarchies. At the top are two
abstract classes:

The Character Stream Classes

These abstract classes handle Unicode character streams.

Reader
Writer

The abstract classes Reader and Writer define several key methods that the other
stream classes implement.

Two of the most important methods are read() and write(), which read and write
characters of data, respectively. Each has a form that is abstract and must be
overridden by derived stream classes.

The Character Stream Classes
The Character
Stream I/O
Classes in
java.io

The Predefined Streams
All Java programs automatically import the java.lang package, which defines a class
called System, which encapsulates several aspects of the run-time environment.

For example, using some of its methods, you can obtain the current time and the
settings of various properties associated with the system.

System also contains three predefined stream variables:
in - System.in refers to standard input, which is the keyboard by default.

out - System.out refers to the standard output stream, which is the console by default.

err - System.err refers to the standard error stream, which also is the console by default.

These fields are declared as public, static, and final within System. This means that
they can be used by any other part of your program and without reference to a
specific System object.

The Predefined Streams

System.in is an object of type InputStream; System.out and System.err are objects of
type PrintStream.

These are byte streams, even though they are typically used to read and write
characters from and to the console.

However, these streams may be redirected to any compatible I/O device.

Reading Console Input

To obtain a character-based stream that is attached to the console, wrap System.in in
a BufferedReader object.

BufferedReader supports a buffered input stream. A commonly used constructor is
shown here:

In Java, console input is accomplished by reading from System.in.

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader that is
being created.

Reader is an abstract class. One of its concrete subclasses is InputStreamReader,
which converts bytes to characters.

Reading Console Input
To obtain an InputStreamReader object that is linked to System.in, use the following
constructor:

Because System.in refers to an object of type InputStream, it can be used for
inputStream.

InputStreamReader(InputStream inputStream)

Putting it all together, the following line of code creates a BufferedReader that is
connected to the keyboard:

BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the
console through System.in.

Reading Characters
// Use a BufferedReader to read characters from the console.

import java.io.*;
class BRRead {

public static void main(String args[]) throws IOException{
char c;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

// read a character
System.out.println("Enter a character");
c = (char) br.read(); /* read the byte as integer

and convert the integer to character */
System.out.println(c);

// read characters
System.out.println("Enter characters, 'q' to quit.");
do {

c = (char) br.read();
System.out.println(c);

} while(c != 'q');
}

}

The output from the program is shown here:

Enter a character
a
a
Enter characters, 'q' to quit.
b
b
c
c
q
q

Reading Characters
// Read a string from console using a BufferedReader.

import java.io.*;

class BRReadLines {

public static void main(String args[]) throws IOException{

// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

String str;

System.out.println("Enter lines of text:");
str = br.readLine();

System.out.println("Entered text is:");
System.out.println(str);

}
}

The output from the program is shown here:

Enter lines of text:
Hello World!

Entered text is:
Hello World!

Writing Console Output
Console output is most easily accomplished with print() and println().

These methods are defined by the class PrintStream (which is the type of object
referenced by System.out).

Because PrintStream is an output stream derived from OutputStream, it also
implements the low-level method write().

Thus, write() can be used to write to the console. The simplest form of write() defined
by PrintStream is shown here:

Even though System.out is a byte stream, using it for simple program output is still
acceptable.

void write(int byteval)

Although byteval is declared as an integer, only the low-order eight bits are written.

Writing Console Output
// Demonstrate System.out.write().

class WriteDemo {

public static void main(String args[]) {

int b;

b = 'A';

System.out.write(b);

System.out.write('\n');
}

}
The output from the program is shown here:

A

// Self Study from Page Nos. 308-309
The PrintWriter Class

Reading and Writing Files
Java provides a number of classes and methods that allow you to read and write files.

Two of the most often-used stream classes are FileInputStream and
FileOutputStream, which create byte streams linked to files.

To open a file, you simply create an object of one of these classes, specifying the
name of the file as an argument to the constructor.

FileInputStream(String fileName) throws FileNotFoundException

FileOutputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file that you want to open. 1

When you create an input stream, if the file does not exist, then FileNotFoundException is
thrown.

2

1

Reading and Writing Files

When you are done with a file, you must close it. This is done by calling the close()
method, which is implemented by both FileInputStream and FileOutputStream.

For output streams, if the file cannot be opened or created, then FileNotFoundException is
thrown.

3

FileNotFoundException is a subclass of IOException. When an output file is opened, any
preexisting file by the same name is destroyed.

4

Closing a file releases the system resources allocated to the file, allowing them to be used
by another file.

1

void close() throws IOException

Failure to close a file can result in “memory leaks” because of unused resources remaining
allocated.

2

2

Reading and Writing Files
To read from a file, you can use a version of read() that is defined within
FileInputStream. The one that we will use is shown here:

It reads a single byte from the file and returns the byte as an integer value.1

int read() throws IOException

read() returns –1 when the end of the file is encountered. It can throw an IOException.2

3

To write to a file, you can use the write() method defined by FileOutputStream. Its
simplest form is shown here:

4

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared as
an integer, only the low-order eight bits are written to the file.

1

If an error occurs during writing, an IOException is thrown.1

Example Reading from a File
/* The following program uses read() to input and display the contents of a file that contains ASCII text. The name of the
file is specified as a command-line argument. */

import java.io.*;
class ShowFile {

public static void main(String args[]) {
int i;
FileInputStream fin;
// First, confirm that a filename has been specified.
if(args.length != 1) {

System.out.println("Usage: ShowFile filename");
return; // exit from main() method

}
// Attempt to open the file.
try {

fin = new FileInputStream(args[0]);
} catch(FileNotFoundException e) {

System.out.println("Cannot Open File");
return;

}

Example Reading from a File

// At this point, the file is open and can be read.
// The following reads characters until EOF is encountered.
try {

do {
i = fin.read();
if(i != -1)

System.out.print((char) i);
} while(i != -1);

} catch(IOException e) {
System.out.println("Error Reading File");

}
// Close the file.
try {

fin.close();
} catch(IOException e) {

System.out.println("Error Closing File");
}

}
}

How to run this program?

1. Create a text file named TEXT.TXT
2. Put some contents in TEXT.TXT

3. Compile your program as usual
4. Run as:

java ShowFile TEXT.TXT

5. Try running your program without command
 line arguments
6. Try running your program with no contents
 in TEXT.TXT file

Example Writing to a File
/* Copy a file. To use this program, specify the name of the source file and the destination file. For example, to
copy a file called FIRST.TXT to a file called SECOND.TXT, use the following command line.
java CopyFile FIRST.TXT SECOND.TXT */

import java.io.*;
class CopyFile {

public static void main(String args[]) throws IOException{
int i;
FileInputStream fin = null;
FileOutputStream fout = null;
// First, confirm that both files have been specified at command line.
if(args.length != 2) {

System.out.println("Usage: CopyFile from to");
Return;

}
// Copy a File.
try {

// Attempt to open the files.
fin = new FileInputStream(args[0]);
fout = new FileOutputStream(args[1]);

Example Writing to a File
do {

i = fin.read();
if(i != -1)

fout.write(i);
} while(i != -1);

} catch(IOException e) {
System.out.println("I/O Error: " + e);

} finally {
try {

if(fin != null)
fin.close();

} catch(IOException e2) {
System.out.println("Error Closing Input File");

}
try {

if(fout != null)
fout.close();

} catch(IOException e2) {
System.out.println("Error Closing Output File");

}
}

}
}

How to run this program?

1. Create two text files FIRST.TXT & SECOND.TXT
2. Put some contents in FIRST.TXT

3. Compile your program as usual
4. Run as:

java CopyFile FIRST.TXT SECOND.TXT

5. Try running your program without command
line arguments
6. Try running your program with no contents
in FIRST.TXT file

Java Source
Code

Java Compiler

Java
Interpreter

Java Enabled
Web Browser

Bytecode

Applet type Application Type

Applet Fundamentals
Types of Java ProgramsA

Console Application
Applets

Applet Fundamentals
Applets are small applications that are accessed on an Internet server, transported
over the Internet, automatically installed, and run as part of a web document.

After an applet arrives on the client, it has limited access to resources so that it can
produce a graphical user interface and run various computations without
introducing the risk of viruses or breaching data integrity.

Applets differ from console-based applications in several key areas.

import java.awt.*;
import java.applet.*;
public class SimpleApplet extends Applet {

public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);

}
}

A simple applet is shown below:

Applet Fundamentals

import java.awt.*;
import java.applet.*;
public class SimpleApplet extends Applet {

public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);

}
}

This applet begins with two import statements.1

The first imports the Abstract Window Toolkit
(AWT) classes. Applets interact with the user
through a GUI framework, not through the
console-based I/O classes.

2

The AWT contains very basic support for a
window-based, graphical user interface.

3

The second import statement imports the applet
package, which contains the class Applet.

4

Every AWT-based applet that you create must be
a
subclass (either directly or indirectly) of Applet.

5

SimpleApplet class must be declared as public,
because it will be accessed by code that is outside
the program.

6

Applet Fundamentals

import java.awt.*;
import java.applet.*;
public class SimpleApplet extends Applet {

public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);

}
}

Inside SimpleApplet, paint() is declared which is
defined by the AWT and must be overridden by
the applet.

7

paint() is called each time that the applet must
redisplay its output.

8

The paint() method has one parameter of type
Graphics which ontains the graphics context,
which describes the graphics environment in
which the applet is running. This context is used
whenever output to the applet is required.

9

drawString(), which is a member of the Graphics
class, outputs a string beginning at the specified
X,Y location.

10

Applet Fundamentals

import java.awt.*;
import java.applet.*;
public class SimpleApplet extends Applet {

public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);

}
}

Executing the applet within a Java-compatible
web browser(by html file)

a

Notice that the applet does not have a main()
method. An applet begins execution when the
name of its class is passed to an applet viewer or
to a network browser.

11

Compiling is same as in console applications.
However, running Applet involves a different
process. In fact, there are two ways in which you
can run an applet:

12

Using an applet viewer, such as the standard
tool, appletviewer.

b

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

