
Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 16: Enumerations and Autoboxing

Course webpage
[http://www.mkbhandari.com/mkwiki]

Programming in Java

http://www.mkbhandari.com/mkwiki

Outline

Enumerations1

Type Wrappers2

Autoboxing2.1

Unboxing2.2

An Enumeration is a list of named constants.

In Java, an enumeration can have constructors, methods, and instance variables.

Enumerations

In Java, an enumeration defines a class type. By making enumerations into classes,
the capabilities of the enumeration are greatly expanded.

Java enumerations is similar to enumerations in other languages with some
differences

An enumeration is created using the enum keyword. For example, here is a simple
enumeration that lists various apple varieties:

// An enumeration of apple varieties.
enum Apple {

Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

Enumerations

// An enumeration of apple varieties.
enum Apple {

Jonathan, GoldenDel, RedDel,
 Winesap, Cortland
}

The identifiers Jonathan, GoldenDel, and so on, are called
enumeration constants.

1

Each is implicitly declared as a public, static final member
of Apple.

2

Once you have defined an enumeration, you can create a
variable of that type. However, even though enumerations
define a class type, you do not instantiate an enum using
new.

3

Apple ap; //same as in primitive types.

Because ap is of type Apple, the only values that it can be
assigned (or can contain) are those defined by the
enumeration.

4

ap = Apple.RedDel;

Enumerations
// An enumeration of apple varieties.

enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland;

}

class EnumDemo {
public static void main(String args[]) {

Apple ap;
ap = Apple.RedDel;
// Output an enum value.
System.out.println("Value of ap: " + ap);
System.out.println();
ap = Apple.GoldenDel;
// Compare two enum values.
if(ap == Apple.GoldenDel){

System.out.println("ap contains GoldenDel.\n");
}

// Use an enum to control a switch statement.
switch(ap) {

case Jonathan:
System.out.println("Jonathan is red.");
break;

case GoldenDel:
System.out.println("Golden Delicious is yellow.");
break;

case RedDel:
System.out.println("Red Delicious is red.");
break;

case Winesap:
System.out.println("Winesap is red.");
break;

case Cortland:
System.out.println("Cortland is red.");
break;

}
}

}

Enumerations
// Use an enum to control a switch statement.
switch(ap) {

case Jonathan:
System.out.println("Jonathan is red.");
break;

case GoldenDel:
System.out.println("Golden Delicious is yellow.");
break;

case RedDel:
System.out.println("Red Delicious is red.");
break;

case Winesap:
System.out.println("Winesap is red.");
break;

case Cortland:
System.out.println("Cortland is red.");
break;

}
}

}

The output from the program is shown here:

Value of ap: RedDel
ap contains GoldenDel.
Golden Delicious is yellow.

All enumerations automatically contain two predefined methods:

The values() and valueOf() Methods

In both cases, enum-type is the type of the enumeration.

public static enum-type [] values()

The values() method returns an array that contains a list of the enumeration constants.

1

public static enum-type valueOf(String str)

The valueOf() method returns the enumeration constant whose value corresponds to the
string passed in str.

2

In both cases, enum-type is the type of the enumeration.

The values() and valueOf() Methods
// Use the built-in enumeration methods.
// An enumeration of apple varieties.
enum Apple {

Jonathan, GoldenDel, RedDel, Winesap, Cortland
}
class EnumDemo2 {

public static void main(String args[]){
Apple ap;
System.out.println("Here are all Apple constants:");

// use values()
Apple allapples[] = Apple.values();

for(Apple a : allapples)
System.out.println(a);

System.out.println();

// use valueOf()
ap = Apple.valueOf("Winesap");
System.out.println("ap contains " + ap);

}
}

The output from the program is shown here:

Here are all Apple constants:
Jonathan
GoldenDel
RedDel
Winesap
Cortland

ap contains Winesap

Java Enumerations Are Class Types
Java enumeration is a class type.

Enumeration can have constructors, instance variables and methods:

Although you can’t instantiate an enum using new, it otherwise has much the same capabilities as
other classes.

Each enumeration constant is an object of its enumeration type

The constructor is called when each enumeration constant is created

Each enumeration constant has its own copy of any instance variables defined by the enumeration

Java Enumerations Are Class Types
// Use an enum constructor, instance variable, and method.
enum Apple {

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8); // Arguments for Constructors
private int price; // Price of each apple
Apple(int p) { // Constructor

price = p;
}
int getPrice() { // Method

return price;
}

}
class EnumDemo3 {

public static void main(String args[]) {
Apple ap;
// Display price of Winesap.
System.out.println("Winesap costs " +

Apple.Winesap.getPrice() +" cents. \n");
// Display all apples and prices.
System.out.println("All apple prices:");
for(Apple a : Apple.values())

System.out.println(a + " costs " + a.getPrice() +" cents.");
}

}

The output is shown here:

Winesap costs 15 cents.

All apple prices:
Jonathan costs 10 cents.
GoldenDel costs 9 cents.
RedDel costs 12 cents.
Winesap costs 15 cents.
Cortland costs 8 cents.

Enumerations Inherit Enum
// Self Study Page No. 269-272

Java uses primitive types (also called simple types), such as int or double, to hold the
basic data types supported by the language.

Type Wrappers

Primitive types, rather than objects, are used for these quantities for the sake of
performance.

Using objects for these values would add an unacceptable overhead to even the
simplest of calculations.

Thus, the primitive types are not part of the object hierarchy, and they do not inherit
Object.

Despite the performance benefit offered by the primitive types, there are times when
you will need an object representation

You can’t pass a primitive type by reference to a method

Many of the standard data structures implemented by Java operate on objects, which means that
you can’t use these data structures to store primitive types

Java provides type wrappers

Type Wrappers

The type wrappers are:

classes that encapsulate a primitive type within an object

Character
Boolean

Double, Float, Long, Integer, Short, Byte

These classes offer a wide array of methods that allow you to fully integrate the
primitive types into Java’s object hierarchy.

Type Wrappers

Character is a wrapper around a char. The constructor for Character is:

Character(char ch)

ch specifies the character that will be wrapped by the Character object being created.

To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue() // It returns the encapsulated character.

Character1

Type Wrappers

Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue) // boolValue must be either true or false.

Boolean(String boolString) // if boolString contains the string "true" (in uppercase or
 lowercase), then the new Boolean object will be true.
 Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue() // It returns the boolean equivalent of the invoking object.

Boolean2

Type Wrappers

By far, the most commonly used type wrappers are those that represent numeric values.
These are Byte, Short, Integer, Long, Float, and Double.

The Numeric Type Wrappers3

All of the numeric type wrappers inherit the abstract class Number.

Number declares methods that return the value of an object in each of the different number
formats. These methods are shown here:

These methods are implemented by each of the numeric type wrappers.

byte byteValue()
double doubleValue() // doubleValue() returns the value of an object as a double.

float floatValue() // floatValue() returns the value as a float, and so on.

int intValue()
long longValue()
short shortValue()

Type Wrappers

// Demonstrate a type wrapper.

class Wrap {
public static void main(String args[]) {

// The process of encapsulating a value within an object is called boxing.
Integer iOb = new Integer(100) // Wraps the integer value 100 inside an Integer object called iOb.

//The process of extracting a value from a type wrapper is called unboxing.
int i = iOb.intValue(); // Obtains the value by calling intValue() and stores the result in i.

System.out.println(i + " " + iOb); // displays 100 100
}

}

The following program demonstrates how to use a numeric type wrapper to encapsulate a value
and then extract that value.

Autoboxing

Auto (boxing/unboxing)

The process by which a primitive type is automatically encapsulated into its equivalent type
wrapper whenever an object of that type is needed.

There is no need to explicitly construct an object.

Auto-unboxing
The process by which the value of a boxed object is automatically extracted from a type
wrapper when its value is needed

There is no need to call a method such as intValue() or doubleValue().

Autoboxing

Integer iOb = 100; // autobox an int 100

With autoboxing, it is no longer necessary to manually construct an object in order to
wrap a primitive type

You need only assign that value to a type-wrapper reference

Java automatically constructs the object for you:

Notice that the object is not explicitly created through the use of new. Java handles
this for you, automatically

// Demonstrate autoboxing/unboxing.

class AutoBox {
public static void main(String args[]) {

Integer iOb = 100; // autobox an int
int i = iOb; // auto-unbox
System.out.println(i + " " + iOb); // displays 100 100

}
}

Auto-unboxing

int i = iOb; // auto-unbox

To unbox an object, simply assign that object reference to a primitive-type variable

Java handles the details for you

Autoboxing and Methods
// Self Study following topics from Page No. 275-279

Autoboxing/Unboxing Occurs in Expressions

Autoboxing/Unboxing Boolean and Character Values

Autoboxing/Unboxing Helps Prevent Errors

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

