Java

Thread

Multitasking

* Multitasking allows several activities to occur
concurrently on the computer

* Levels of multitasking:
— Process-based multitasking
* Allows programs (processes) to run concurrently

— Thread-base multitasking (multithreading)

* Allows parts of the same process (threads) to run
concurrently

Multithreading

* Advantages of multithreading over process-based
multitasking
— Threads share the same address space
— Context switching between threads is usually inexpensive
— Communication between thread is usually inexpensive

e Java supports thread-based multitasking and

provides high-level facilities for multithreaded
programming

Main Thread

When a Java program starts up, one thread begins
running immediately

This is called the main thread of the program

It is the thread from which the child threads will be
spawned

Often, it must be the last thread to finish execution

Main Thread

public class MainThread {
public static void main(String[] args) {

Thread t = Thread. currentThread();
System. out.println("Current thread: " + t);
// change the name of the thread
t.setName("My Thread");
System.out.println("After name change: " + t);
try
{
for(int n =5; n> 0; n--)
{
System.out.println(n);
Thread. sleep(1000);

}
}catch (InterruptedException e)

{
}

System.out.println("Main thread interrupted");

Prepared By - Rifat Shahriyar

How to create Thread

1. By extending the Thread class
2. By implementing Runnable Interface

* Extending Thread

— Need to override the public void run() method

* Implementing Runnable
— Need to implement the public void run() method

e Which one is better ?

ol

Extending Thread

class NewThread?2 extends Thread

{
NewThread2() {
super("Extends Thread");
start();
}
// This 1s the entry point for the thread.
public void run() {
try {
for(int 1 =5; 1 > 0; 1--) {
System.out.println("Child Thread: " + 1);
Thread. sleep(500);
}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
}
}

public class ExtendsThread {
public static void main(String[] args) {
new NewThread2();

} Prepared By - Rifat Shahriyar

Implementing Runnable

3 class NewThreadl implements Runnable

4 of

5 Thread t;

6 NewThreadl() {

7 t = new Thread(this, "Runnable Thread");

8 t.start(Q);

9 }

10 /7 This is the entry point for the thread.

11 ol public void run() {

12 try {

13 for(int 1 =5; 1 > 0; i--) {

14 System.out.println("Child Thread: " + 1);
15 Thread. sleep(500);

16 }

17 } catch (InterruptedException e) {

18 System.out.println("Child interrupted.");
19 }
20 System.out.println("Exiting child thread.");
21 }
22 }
23
24 public class RunnableThread {
25 public static void main(String[] args) {
26 new NewThreadl();
27 } Prepared By - Rifat Shahriyar

28 }

Multiple Threads

It is possible to create more than one thread inside
the main

In multiple threads, often you will want the main
thread to finish last. This is accomplished by

— using a large delay in the main thread

— using the join() method

Whether a thread has finished or not can be known
using isAlive() method

Example: MultipleThreads.java, JoinAliveThreads.java

Thread States

Source: https://avaldes.com/java-thread-states-life-cycle-of-java-threads/

construct

interrupt() or
Thread.start() Elapsed Time ends

Sleeping

lock nofify() Ready-to-Run
lock.notifyAll{) : :

Thread.sleep()

Waiting

run{) completes
or exit()

lock acquired
or I/0 completed : Block on 1/O
Blocking or locked Monitor

{(Sywchronize block)

Prepared By - Rifat Shahriyar

10

Thread Pool

* Thread Pools are useful when you need to limit the
number of threads running in your application
— Performance overhead starting a new thread
— Each thread is also allocated some memory for its stack

* Instead of starting a new thread for every task to
execute concurrently, the task can be passed to a
thread pool

— As soon as the pool has any idle threads the task is
assigned to one of them and executed

Thread Pool

 Thread pools are often used in multi threaded
servers

— Each connection arriving at the server via the network is
wrapped as a task and passed on to a thread pool

— The threads in the thread pool will process the requests on
the connections concurrently

* Java provides Thread Pool implementation with
java.util.concurrent.ExecutorService

of

ExecutorService

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

class MyRunnable implements Runnable {
public void run() {
System.out.println("Running task");
for (int j = 5; j > 0; j--) {
System.out.println(j);

public class ExecutorServiceTest {
public static void main(String[] args) throws Exception{
ExecutorService executorService = Executors.newFixedThreadPool(nThreads: 10);
for (int i = 0; i < 20; i++) {
executorService.execute(new MyRunnable());

}

executorService.shutdown();

Prepared By - Rifat Shahriyar 13

Callable and Future

Runnable cannot return a result to the caller

java.util.concurrent.Callable object allows to return
values after completion

Callable task returns a Future object to return result

T
b

C

ne result can be obtained using get() that remains
ocked until the result is computed

neck completion by isDone(), cancel by cancel()

Example: CallableFutures.java

Synchronization

When two or more threads need access to a shared
resource, they need some way to ensure that the
resource will be used by only one thread at a time

The process by which this is achieved is called
synchronization

Key to synchronization is the concept of the monitor

A monitor is an object that is used as a mutually
exclusive lock

— Only one thread can own a monitor at a given time

Synchronization

* When a thread acquires a lock, it is said to have
entered the monitor

* All other threads attempting to enter the locked

monitor will be suspended until the first thread exits
the monitor

* These other threads are said to be waiting for the
monitor

Synchronization

Three ways to achieve synchronization.
Synchronized method
synchronized void call(String msg) { }
Synchronized block
public void run() {

synchronized(target) { target.call(msg); } }

Lock (java.util.concurrent package)

Example: SynchronizedBlock.java, SynchronizedMethod.java,
SynchronizationlLock.java

Inter Thread Communication

One way is to use polling
— a loop that is used to check some condition repeatedly
— Once the condition is true, appropriate action is taken

Java includes an elegant inter thread communication
mechanism via the wait(), notify() and notifyAll()
methods

These methods are implemented as final methods in
Object, so all classes have them

All three methods can be called only from within a
synchronized method

Inter Thread Communication

wait()

— tells the calling thread to give up the monitor and go to
sleep until some other thread enters the same monitor
and calls notify()

notify()
— wakes up the first thread that called wait() on same object
notifyAll()

— wakes up all the threads that called wait() on same object.
The highest priority thread will run first

Example: IncorrectPC.java, CorrectPC.java,
PCBlockingQueue.java

Suspend, Resume and Stop

Suspend
— Thread t; t.suspend();

Resume
— Thread t; t.resume();

Stop

— Thread t; t.stop();

— Cannot be resumed later

suspend and stop can sometimes cause serious
system failures

Example: SuspendResume.java

