
Java

Thread

Multitasking

• Multitasking allows several activities to occur
concurrently on the computer

• Levels of multitasking:

– Process‐based multitasking

• Allows programs (processes) to run concurrently

– Thread‐base multitasking (multithreading)

• Allows parts of the same process (threads) to run
concurrently

2Prepared By - Rifat Shahriyar

Multithreading

• Advantages of multithreading over process-based
multitasking

– Threads share the same address space

– Context switching between threads is usually inexpensive

– Communication between thread is usually inexpensive

• Java supports thread‐based multitasking and
provides high-level facilities for multithreaded
programming

3Prepared By - Rifat Shahriyar

Main Thread

• When a Java program starts up, one thread begins
running immediately

• This is called the main thread of the program

• It is the thread from which the child threads will be
spawned

• Often, it must be the last thread to finish execution

4Prepared By - Rifat Shahriyar

Main Thread

5Prepared By - Rifat Shahriyar

How to create Thread

1. By extending the Thread class

2. By implementing Runnable Interface

• Extending Thread

– Need to override the public void run() method

• Implementing Runnable

– Need to implement the public void run() method

• Which one is better ?

6Prepared By - Rifat Shahriyar

Extending Thread

7Prepared By - Rifat Shahriyar

Implementing Runnable

8Prepared By - Rifat Shahriyar

Multiple Threads

• It is possible to create more than one thread inside
the main

• In multiple threads, often you will want the main
thread to finish last. This is accomplished by

– using a large delay in the main thread

– using the join() method

• Whether a thread has finished or not can be known
using isAlive() method

• Example: MultipleThreads.java, JoinAliveThreads.java

9Prepared By - Rifat Shahriyar

Thread States

10

Source: https://avaldes.com/java-thread-states-life-cycle-of-java-threads/

Prepared By - Rifat Shahriyar

Thread Pool

• Thread Pools are useful when you need to limit the
number of threads running in your application

– Performance overhead starting a new thread

– Each thread is also allocated some memory for its stack

• Instead of starting a new thread for every task to
execute concurrently, the task can be passed to a
thread pool

– As soon as the pool has any idle threads the task is
assigned to one of them and executed

11Prepared By - Rifat Shahriyar

Thread Pool

• Thread pools are often used in multi threaded
servers

– Each connection arriving at the server via the network is
wrapped as a task and passed on to a thread pool

– The threads in the thread pool will process the requests on
the connections concurrently

• Java provides Thread Pool implementation with
java.util.concurrent.ExecutorService

12Prepared By - Rifat Shahriyar

ExecutorService

13Prepared By - Rifat Shahriyar

Callable and Future

• Runnable cannot return a result to the caller

• java.util.concurrent.Callable object allows to return
values after completion

• Callable task returns a Future object to return result

• The result can be obtained using get() that remains
blocked until the result is computed

• Check completion by isDone(), cancel by cancel()

• Example: CallableFutures.java

14Prepared By - Rifat Shahriyar

Synchronization

• When two or more threads need access to a shared
resource, they need some way to ensure that the
resource will be used by only one thread at a time

• The process by which this is achieved is called
synchronization

• Key to synchronization is the concept of the monitor

• A monitor is an object that is used as a mutually
exclusive lock

– Only one thread can own a monitor at a given time

15Prepared By - Rifat Shahriyar

Synchronization

• When a thread acquires a lock, it is said to have
entered the monitor

• All other threads attempting to enter the locked
monitor will be suspended until the first thread exits
the monitor

• These other threads are said to be waiting for the
monitor

16Prepared By - Rifat Shahriyar

Synchronization

• Three ways to achieve synchronization.

• Synchronized method

synchronized void call(String msg) { }

• Synchronized block

public void run() {

synchronized(target) { target.call(msg); } }

• Lock (java.util.concurrent package)

• Example: SynchronizedBlock.java, SynchronizedMethod.java,
SynchronizationLock.java

17Prepared By - Rifat Shahriyar

Inter Thread Communication

• One way is to use polling

– a loop that is used to check some condition repeatedly

– Once the condition is true, appropriate action is taken

• Java includes an elegant inter thread communication
mechanism via the wait(), notify() and notifyAll()
methods

• These methods are implemented as final methods in
Object, so all classes have them

• All three methods can be called only from within a
synchronized method

18Prepared By - Rifat Shahriyar

Inter Thread Communication

• wait()

– tells the calling thread to give up the monitor and go to
sleep until some other thread enters the same monitor
and calls notify()

• notify()

– wakes up the first thread that called wait() on same object

• notifyAll()

– wakes up all the threads that called wait() on same object.
The highest priority thread will run first

• Example: IncorrectPC.java, CorrectPC.java,
PCBlockingQueue.java

19Prepared By - Rifat Shahriyar

Suspend, Resume and Stop

• Suspend

– Thread t; t.suspend();

• Resume

– Thread t; t.resume();

• Stop

– Thread t; t.stop();

– Cannot be resumed later

• suspend and stop can sometimes cause serious
system failures

• Example: SuspendResume.java

20Prepared By - Rifat Shahriyar

