Programming in Java
Lecture 14: Exception Handling

Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College
University of Delhi

Course webpage
[http://www.mkbhandari.com/mkwiki]

http://www.mkbhandari.com/mkwiki

Outline

» Exception Handling Fundamentals

2 Exception Types

3 Java's Built-in Exceptions

4 Creating Your Own Exceptions

Exception Handling

The Exception Handling in Java is one of the powerful mechanism to handle the
runtime errors so that normal flow of the application can be maintained.

An exception is an abnormal condition that arises in a code sequence at run time. In
other words, an exception is a run-time error.

In computer languages that do not support exception handling, errors must be
checked and handled manually—typically through the use of error codes, and so on.

Java’'s exception handling avoids these problems and, in the process, brings run-time
error management into the object-oriented world.

Exception Handling Fundamentals

A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code.

When an exceptional condition arises, an object representing that exception is
created and thrown in the method that caused the error.

That method may choose to handle the exception itself, or pass it on. Either way, at
some point, the exception is caught and processed.

Exceptions can be generated by the Java run-time system, or they can be manually
generated by your code.

Exceptions thrown by Java relate to fundamental errors that violate the rules of the
Java language or the constraints of the Java execution environment.

Manually generated exceptions are typically used to report some error condition to
the caller of a method.

Exception Handling Fundamentals

= Java exception handling is managed via five keywords:

@ try: Program statements(block of code) that you want to monitor for exceptions are
contained within a try block.

@ catch: If an exception occurs within the try block, it is thrown. Your code can catch this
exception (using catch) and handle it in some rational manner.

@® throw: System-generated exceptions are automatically thrown by the Java run-time system.
To manually throw an exception, use the keyword throw.

@ throws: Any exception that is thrown out of a method must be specified as such by a
throws clause.

® finally: Any code that absolutely must be executed after a try block completes is put in a
finally block.

Exception Handling Fundamentals

= This is the general form of an exception-handling block:
try {
}

// block of code to monitor for errors

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2

}
/] ...
finally {
// block of code to be executed after try block ends
}

= Here, ExceptionType is the type of exception that has occurred.

Exception Types

= The top-level exception hierarchy is shown here:

Throwable

Exception

RuntimeException

-

Error

@ All exception types are subclasses of the built-in class
Throwable (is at the top of the exception class
hierarchy).

@ Throwable partitions exceptions into two distinct
branches using two subclasses, i.e. Exception and Error.

@® Exception Class

e Used for exceptional conditions that user programs
should catch.

e To create your own custom exception types

® There is an important subclass of Exception, called
RuntimeException. Exceptions of this type are
automatically defined for the programs that you
write and include things such as division by zero
and invalid array indexing.

Exception Types

= The top-level exception hierarchy is shown here:

Throwable

Exception

-

RuntimeException

Error

@® Error

® Which defines exceptions that are not expected to
be caught under normal circumstances by your
program.

® [Exceptions of type Error are used by the Java run-
time system to indicate errors having to do with the
run-time environment, itself.

® VirtualMachineError, OutOfMemoryError are
examples of Error.
@® Error vs. Exception

e An Error indicates serious problem that a
reasonable application should not try to catch.

® fxception indicates conditions that a reasonable
application might try to catch.

Uncaught Exception

= What happens when you don’t handle exceptions?

= This small program includes an expression that intentionally causes a divide-by-zero

error: ,
@ When the Java run-time system detects the attempt

to divide by zero, it constructs a new exception

class ExcO { : . .
public static void main(String args[1) { object and then throws this exception.
Intd =0;
inta=42/d; @ This causes the execution of ExcO to stop, because
} once an exception has been thrown, it must be
} caught by an exception handler and dealt with

immediately.

® In this example, we haven't supplied any exception
handlers of our own, so the exception is caught by
the default handler provided by the Java run-time
system.

Uncaught Exception

= What happens when you don’t handle exceptions?

= This small program includes an expression that intentionally causes a divide-by-zero

error:
® Any exception that is not caught by your program

will ultimately be processed by the default handler.

class ExcO {
public static void main(String args[1) {
Intd=0; ® The default handler displays a string describing the
inta=42/d; exception, prints a stack trace from the point at
} which the exception occurred, and terminates the
} program.

® Here is the exception generated when this example
is executed:

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Uncaught Exception

= What happens when you don’t handle exceptions?

= This small program includes an expression that intentionally causes a divide-by-zero

error: . : ,
@ The simple stack trace for this program includes:

class ExcO { e Class Name: Exe0
public static void main(String args[1) { e Method Name: main
Intd =0;
inta=42/d; ® File Name: Exe0.java
} ! ® Line Number: 4

e Type of Exception Thrown: ArithmeticException
= Here is the exception generated

when this example is executed: ® Java supplies several built-in exception types that
match the various sorts of run-time errors that can
java.lang.ArithmeticException: / by zero be generated.

at Exc0.main(Exc0.java:4)

Uncaught Exception

s The stack trace will always show the sequence of method invocations that led up to
the error.

class Excl{ | @ The simple stack trace for this program includes:
statlci;]/;)hd:sg.broutlne(A e Class Name: Exe
inta=10/d; e Method Name: main, subroutine
} . . :
public static void main(String args[1) { * File Name: Exel.java
Exc1.subroutine(); e Line Number: 7,4
}
} e Type of Exception Thrown: ArithmeticException

m The resulting stack trace from the
default exception handler shows how

the entire call stack is displayed: ® The call stack is quite useful for debugging,
because it pinpoints the precise sequence of steps
java.lang.ArithmeticException: / by zero that led to the error.

at Exc1.subroutine(Exc1.java:4)
at Exc1.main(Exc1.java:7)

Using try anc catch

The default exception handler provided by the Java run-time system is useful for
debugging.

You will usually want to handle an exception yourself. Doing so provides two benefits:

@ It allows you to fix the error.

@ It prevents the program from automatically terminating.

To guard against and handle a run-time error, simply enclose the code that you want
to monitor inside a try block.

Immediately following the try block, include a catch clause that specifies the
exception type that you wish to catch.

Using try anc catch

= The following program includes a try block and a catch clause that processes the
ArithmeticException generated by the division-by-zero(DBZ) error:

class Exc2{ S @ Notice that the call to printin() inside the try
public static void main(String args[1) { block is never executed.
intd, a;
try {// monitor a block of code.
d=0;
a=42/d: ® Once an exception is thrown, program
System.out.printIn("This will not be printed."); control transfers out of the try block into the

} catch (ArithmeticException e) { // catch DBZ error catch block.
System.out.printin("Division by zero.");

}

® Once the catch statement has executed,
System.out.printIn("After catch statement.”); program control continues with the next line
} in the program following the entire try/catch
} This program generates the following output: mechanism.

Division by zero.
After catch statement.

Using try anc catch

A try and its catch statement form a unit.

The scope of the catch clause is restricted to those statements specified by the
immediately preceding try statement.

A catch statement cannot catch an exception thrown by another try statement
(except in the case of nested try statements).

The statements that are protected by try must be surrounded by curly braces. (That
is, they must be within a block.)

You cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened.

Using try anc catch

// Handle an exception and move on. . o _
import java.util.Random: = If either division operation causes a
class HandleError { divide-by-zero error, it is caught, the
public static void main(String args[]) { value of a is set to zero, and the program

int a=0, b=0, c=0; continues.

Random r = new Random();
for(int i=0; i<32000; i++) {

try { m What will be the output ?

b = r.nextint();
C = r.nextint();

a=12345/ (b/c);

} catch (ArithmeticException e) {
System.out.printin("Division by zero.");
a =0; //Set a to zero and continue

}

System.out.printin("a: " + a);

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a
string containing a description of the exception.

You can display this description in a printin() statement by simply passing the
exception as an argument (Displaying a description of an exception is valuable in
experimenting with exceptions or debugging).

For example, the catch block in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
System.out.printin("Exception: " + e);
a=0;//setatozero and continue

}

When this version is substituted in the program, and the program is run, each divide-
by-zero error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code.

To handle this type of situation, you can specify two or more catch clauses, each
catching a different type of exception.

When an exception is thrown, each catch statement is inspected in order, and the
first one whose type matches that of the exception is executed.

After one catch statement executes, the others are bypassed, and execution
continues after the try/catch block.

Multiple catch Clauses

= The following example traps two different exception types:

// Demonstrate multiple catch statements. ® This program will cause a division-by-zero
class MultipleCatches { exception if it is started with no command-
public static void main(String args[]) { line arguments, since a will equal zero.
try {

int a = args.length; java MultipleCatches

System.out.printin("a =" + a); a=0

intb=42/a; Divide by 0: java.lang.ArithmeticException: / by zero

intc[]1={1}; After try/catch blocks.

c[42] =99;

} catch(ArithmeticException e) {
System.out.printin("Divide by 0: " + e);

} catch(ArraylndexOutOfBoundsException e) {
System.out.printin("Array index oob: " + e);

}
System.out.printin("After try/catch blocks.");

Multiple catch Clauses

= The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultipleCatches {
public static void main(String args[]) {
try {
int a = args.length;
System.out.printin("a =" + a);
intb=42/a;
intc[]={1}
c[42] = 99;
} catch(ArithmeticException e) {

® |t will survive the division if you provide a
command-line argument, setting a to
something larger than zero.

java MultipleCatches TestArg

a=1

Array index oob: java.lang.ArraylndexOutOfBoundsException:42
After try/catch blocks.

System.out.printin("Divide by 0: " + e);
} catch(ArrayindexOutOfBoundsException e) {
System.out.printin("Array index oob: " + e);

}

System.out.printin("After try/catch blocks.");

Multiple catch Clauses

= When you use multiple catch statements, it is important to remember that exception
subclasses must come before any of their superclasses.

= This is because a catch statement that uses a superclass will catch exceptions of that
type plus any of its subclasses. Thus, a subclass would never be reached if it came
after its superclass. Further, in Java, unreachable code is an error.

cIaSS.Supe.rSub_Catch.{ ' @® Second catch statement is unreachable
public static void main(String args[1) { because the exception has already been

try{ . caught.
inta=0; intb=42/ a;

} catch(Exception e) {
System.out.printin("Generic Exception catch.");

} catch(ArithmeticException e) { // ERROR - unreachable
System.out.printIin("This is never reached.");

@ Since ArithmeticException is a subclass
of Exception, the first catch statement
will handle all Exception-based errors,
including ArithmeticException.

}

} @® This means that the second catch statement

} will never execute. To fix the problem,
reverse the order of the catch statements.

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of
another try.

Each time a try statement is entered, the context of that exception is pushed on the
stack.

If an inner try statement does not have a catch handler for a particular exception, the
stack is unwound and the next try statement’s catch handlers are inspected for a
match.

This continues until one of the catch statements succeeds, or until all of the nested
try statements are exhausted.

If no catch statement matches, then the Java run-time system will handle the
exception.

Nested try Statements

// An example of nested try statements.

class NestTry {

public static void main(String args[1) {

try {

int a = args.length;
intb=42/ a;
System.out.printin("a ="+ a);
try {// nested try block

if(a==1)

a = a/(a-a); // division by zero
if(a==2) {

intc[1={1}

® When you execute the program with no

command-line arguments

java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

c[42] =99; // generate an out-of-bounds exception

}

} catch(ArraylndexOutOfBoundsException e) {
System.out.printIn("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {

}

System.out.printin("Divide by 0: " + e);

Nested try Statements

é/la'irs] E)gtr}?;e{c’f nested try statements. ® When you execute the program with one
public static void main(String args[1) { command-line arguments
try {
:EE E - Zrzg/s?ngth; java NestTry One
B ' 1 " —_ . a = 1
fri/sziinﬁz:zé%r't?%oaci *ta) Divide by 0: java.lang.ArithmeticException: / by zero
ifa==1)
a = a/(a-a); // division by zero*
if(a==2) {
intc[1={1}

c[42] =99; // generate an out-of-bounds exception

}
} catch(ArraylndexOutOfBoundsException e) {

System.out.printIn("Array index out-of-bounds: " + e);

}
} catch(ArithmeticException e) { _ _ .
System.out.printin("Divide by 0: " + e); *Since the inner block does not catch this
} exception, it is passed on to the outer try block,
) where it is handled.

Nested try Statements

é/la'irs] E)gtr}?;e{o}c nested try statements. ® When you execute the program with two
public static void main(String args[1) { command-line arguments
try {

int a = args.length; :

: B _ java NestTry One Two

|ntb—42/a,_ o ' 3=2

system.out.print n(l a . *ta) Array index out-of-bounds:

try{ /i/f(nae_s_te)d try bloc java.lang.ArraylndexOutOfBoundsException:42
a = a/(a-a); // division by zero

if(a==2) {

intc[1={1}

c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArraylndexOutOfBoundsException e) {

System.out.printIn("Array index out-of-bounds: " + e);

}
} catch(ArithmeticException e) {

System.out.printin("Divide by 0: " + e);
}

throw

So far, you have only been catching exceptions that are thrown by the Java run-time
system.

However, it is possible for your program to throw an exception explicitly, using the
throw statement. The general form of throw is shown here:

throw Throwablelnstance;

Here, Throwablelnstance must be an object of type Throwable or a subclass of
Throwable.

Primitive types, such as int or char, as well as non-Throwable classes, such as String
and Object, cannot be used as exceptions.

There are two ways you can obtain a Throwable object:

@ Using a parameter in a catch clause
@ Creating one with the new operator.

throw

= The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed.

= The nearest enclosing try block is inspected to see if it has a catch statement that
matches the type of exception.

® |fit does find a match, control is transferred to that statement.

® /f not, then the next enclosing try statement is inspected, and so on.

® /f no matching catch is found, then the default exception handler halts the program and prints
the stack trace.

throw

/* Here is a sample program that creates and throws an exception. The handler that catches the exception
rethrows it to the outer handler. */

@ This program gets two chances to deal with

class ThrowDemo { the same error.
static void demoproc() { . . .
try { ® First, main() sets up an exception context

//construct an instance of NullPointerException and then calls demoproc().
throw new NullPointerException("demo");

} catch(NullPointerException e) { ® The demoproc() method then sets up
System.out.printin("Caught inside demoproc."); another exception-handling context
throw e; // rethrow the exception and immediately throws a new

y ; instance of NullPointerException,
public static void main(String args[1) { which is caught on the next line.

try { demoproc(); @® The exception is then rethrown.

} catch(NullPointerException e) {

H n o 1 + .
) System.out.printin(*Recaught: * + e); This program generates the following output:

} Caught inside demoproc.
) Recaught: java.lang.NullPointerException: demo

throws

If a method is capable of causing an exception that it does not handle, it must specify
this behavior so that callers of the method can guard themselves against that
exception.

You do this by including a throws clause in the method'’s declaration.

A throws clause lists the types of exceptions that a method might throw.

This is necessary for all exceptions, except those of type Error or RuntimeException,
or any of their subclasses.

All other exceptions that a method can throw must be declared in the throws clause.
If they are not, a compile-time error will result.

throws

= This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list {

// body of method

= Here, exception-list is a comma-separated list of the exceptions that a method can
throw.

throws

// Example of throws
class ThrowsDemo {
static void throwOne() throws lllegalAccessException {

System.out.printIn("Inside throwOne.");
throw new lllegalAccessException("demo");

}

public static void main(String args[1) {
try {
throwOne();
} catch (lllegalAccessException e) {
System.out.printIn("Caught " + e);

}

} Here is the output of the program:
inside throwOne
caught java.lang.lllegalAccessException: demo

throw vs. throws

throw throws

1. Java throw keyword is used to explicitly 1. Java throws keyword is used to declare
throw an exception an exception.

. void m(}{ 2. void m()throws ArithmeticException{
throw new [/method code
ArithmeticException("sorry"); 1
}

. Checked exception cannot be 3. Checked exception can be propagated

propagated using throw only. with throws.

. Throw is followed by an instance. 4. Throw is followed by a class.

. Throw is used within the method. 5. Throws is used with the method

signature.

. You cannot throw multiple exceptions. 6. You can declare multiple exceptions

e.g.
public void method()throws
|OException,SQLException.

finally

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block.

The finally block will execute whether or not an exception is thrown.

If an exception is thrown, the finally block will execute even if no catch statement
matches the exception.

Any time a method is about to return to the caller from inside a try/catch block, via
an uncaught exception or an explicit return statement, the finally clause is also
executed just before the method returns.

finally block useful for closing file handles and freeing up any other resources that
might have been allocated at the beginning of a method with the intent of disposing
of them before returning.

The finally clause is optional. However, each try statement requires at least one
catch or a finally clause.

finally

// Demonstrate finally.

class FinallyDemo {
// Throw an exception out of the method.
static void procA() {

try {

System.out.printin("inside procA");
throw new RuntimeException("demo");
} finally {
System.out.printin("procA's finally");
}
}

// Return from within a try block.
static void procB() {

try {

System.out.printin("inside procB");
return;
} finally {
System.out.printin("procB's finally");
}

// Execute a try block normally.
static void procC() {

try {

System.out.printIn("inside procC");
} finally {
System.out.printin("procC's finally");
}
b

public static void main(String args[1) {

try {
procA();
} catch (Exception e) {
System.out.printIn("Exception caught");
}
procB();
procC();

finally

Here is the output generated by the program:

inside procA
procA's finally
Exception caught
inside procB
procB's finally
inside procC
procC's finally

// Execute a try block normally.
static void procC() {

try {

System.out.printIn("inside procC");
} finally {
System.out.printIn("procC's finally");

}
}

public static void main(String args[1) {

try {
procA();
} catch (Exception e) {
System.out.printIn("Exception caught");
}
procB();
procC();

final vs. finally vs. finalize

No. final

1)

2)

Final is used to apply restrictions on
class, method and variable. Final class
can't be inherited, final method can't
be overridden and final variable value
can't be changed.

Final is a keyword.

finally

Finally is used to
place important code,
it will be executed
whether exception is

handled or not.

Finally is a block.

finalize

Finalize is used to
perform clean up
processing just
before object is

garbage collected.

Finalize is a
method.

final vs. finally vs. finalize

class FinalExample{
public static void main(String[] argsX{
final int x=100;
x=200; //Compile Time Error

class FinallyExample{
public static void main(String[] argsX{

try{
int x=300;

}catch(Exception e}
System.out.printin(e);

}

finally{
System.out.printin("finally block is executed");

}

class FinalizeExample{

public void finalize()
System.out.printin("finalize called");

}

public static void main(String[] args){
FinalizeExample f1=new FinalizeExample();
FinalizeExample f2=new FinalizeExample();
f1=null;
f2=null;
System.gc();

Java's Built-in Exceptions

= Inside the standard package java.lang, Java defines several exception classes.

m The classes which directly inherit Throwable class except RuntimeException and Error
are known as checked exceptions e.g. |OException, SQLException etc. Checked
exceptions are checked at compile-time.

= The classes which inherit RuntimeException are known as unchecked exceptions
e.g. ArithmeticException, NullPointerException, ArraylndexOutOfBoundsException
etc. Unchecked exceptions are not checked at compile-time, but they are checked at
runtime.

Java's Built-in Exceptions

® Java's Unchecked RuntimeException Subclasses Defined in java.lang

Exception Meaning

Arithmetic Exception Arithmetic ermor, such as divide-by-zero.

Arraylndex OurOfBoundsEx ceplion Array index is out-ofbounds,

ArravSromeException Assignment to an arvay element of an incompatible
Ly

ClassCastException Lovalid cast.

EnumConstan tNotPresen IException A attempt is made to use an undefined

enumeration value,

HMegalArgument Exception [legal argument used to invoke a method.

MegalMonitorState Ex oeption [Mlegal monitwor operation, such as waiting on an
unlocked thread.

[MegalState Exception Environment or application is in incormect state.

HlegalThreadSate Exception Beguested operation not compatible with current
thread state.

[ndexOutOfBoundsException Some type of index is out-of-bounds,

N egativeArmaySise Exception Array created with a negative stee.

M ullPoin terException Ivalied wse of a null reference,

MNumberFommatExcepion Lovalid conversion of a sring to a munenc format,

SecurityExee ption Attempt to violate security,

StinglndexOutCfBounds Attempt to index ouside the boonds of a string,

TypeMNotPresentException Type not found.

U nsupportedOperationException An unsuppored operation was encountered,

Java's Built-in Exceptions

® Java's Checked Exceptions Defined in java.lang

Exception Meaning

ClassMNotFoundException Class not found.

CloneNoSupported Ex ception Attempt to clone an object that does not implement the
Cloneable interface.

Nlegal AvcessException Access to a class is denied.

InstantiatonException Attempt o create an object of an abstract class or iner face.

Intermrupted Ex ception One thread has been interrupred by another thread.

NoSuchFieldException A requested feld does not exist.

NoSuchMethodException A requested method does not exist.

ReflectiveOperabon Exception Superclass of reflecion-related excepions.

Hierarchy of Java Exception Classes

Object

I

l Throwable

Pt

Exceptions Errors
A A A
StackOverFlowError
Check Exceptions Uncheck Exceptions
= VirtualMachineError
OutOfMemoryError
— IOException — ArithmeticException
— SQLException — NullPointerException
— ClassNotFoundException — IndexOutOfBoundsException
]: ArrayindexOutOfBoundsExcpetion
StringindexOutOfBoundsExcpetion

Hierarchy of Java Exception Classes

Throwable

!

Exception Error
— IOException — StackOwverflowError
— SQlL Exception — VirtualMachineErmor
I FouELaESi?e(Stion g o erETRET ETer

— RuntimeException

— ArithmeticException

— MNullPointerException

NumberFormat
Exception

INndexOutOf
BoundsException

ArraylndexOutOf
BoundsException

StringlndexOutOf
BoundsException

Creating your own Exception Subclass

Sometimes you may want to create your own exception types to handle situations
specific to your applications.

Define a subclass of Exception (which is, of course, a subclass of Throwable).

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable.

Thus, all exceptions, including those that you create, have the methods defined by
Throwable available to them.

Exception defines four public constructors:

Exception()
Exception(String msg)

The chained exception feature allows
you to associate another exception with

Throwable(Throwable causeExc)]
an exception.

Throwable(String msg, Throwable causeExc)

Creating your own Exception Subclass

= The Methods Defined by Throwable

Method

Description

firal void
addSuppressed{Throwatile exe)

Adds exe o the list of suppressed exceptions
associated with the invoking exception. Primarily
foor use by the try-with-resoumes statement.

Throwable fAlllnStackTrace()

Feturns a Throwable object that contains a
completed stack trace. This object can be
rethrown.

Throwable getCause()

Feturns the exception that undedies the current
exception. If there s no underlyving exception,
null is retorned.

String getlocal peedMe ssage ()

Feturns a localieed description of the exception.

String getMessage()

Feturns a description of the exoeption.

StackTraceElement| | geSackTrace!)

Feturns an array that contains the stack

trace, one element at a time, as an array of
StackTraceElement. The method at the wp

of the stack 15 the last method called before

the exceprion was thrown, This method is
Found in the first element of the armay. The
StackTraceElement class gives your program
access Lo informaton about each element in the
trace, such a its method name,

Creating your own Exception Subclass

= The Methods Defined by Throwable

final Throwable| | getSuppressed()

Obtains the suppressed exceptions assoctabed
with the mvoking exception and returns an array
that contains the result. Suppressed exceptions
are primarily generated by the trywithresources
statement

Throwable muCause (Throwable cawselixe)

Associates causebxewith the invoking exception
as a cause of the invoking exception. Returns a
reference w the exception.

voud printStackTrace()

Displays the stack trace.

voud printStackTrace (PrintSweam strean)

Sends the siack trace to the specified stream,

voud printStackTrace (PrintWnter sireant)

Sends the siack trace to the specified stream.

voud setStackTrace (Stack TraceElement
elemenis| |)

Sets the stack tace o the eleme nis passed
in elements. This method is for specialized
applications, not nomal use.

String wString()

Returns a Strng object containing a description
of the exception. This method is called by
println{) when outputting a Throwable olbject.

Creating your own Exception Subclass

// This program creates a custom exception type.

class MyException extends Exception {
private int detail;
MyException(int a) {
detail = a;

}
public String toString() { //overrides toString()

return "MyException[" + detail + "]";
}
}

class ExceptionDemo {
static void compute(int a) throws MyException {
System.out.printin("Called compute(" +a +")"),
if(a>10)
throw new MyException(a);

System.out.printin("Normal exit");

public static void main(String args[1) {
try {
compute(1);
compute(20);
} catch (MyException e) {
System.out.printin("Caught " + e);

}

Here is the output of the program:
Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

References

® Reference for this topic
e [Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

o [Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

e [Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

