
Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 14: Exception Handling

Course webpage
[http://www.mkbhandari.com/mkwiki]

Programming in Java

http://www.mkbhandari.com/mkwiki

Outline

Exception Handling Fundamentals1

Exception Types2

Java’s Built-in Exceptions3

Creating Your Own Exceptions4

The Exception Handling in Java is one of the powerful mechanism to handle the
runtime errors so that normal flow of the application can be maintained.

In computer languages that do not support exception handling, errors must be
checked and handled manually—typically through the use of error codes, and so on.

Exception Handling

Java’s exception handling avoids these problems and, in the process, brings run-time
error management into the object-oriented world.

An exception is an abnormal condition that arises in a code sequence at run time. In
other words, an exception is a run-time error.

A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code.

That method may choose to handle the exception itself, or pass it on. Either way, at
some point, the exception is caught and processed.

Exception Handling Fundamentals

When an exceptional condition arises, an object representing that exception is
created and thrown in the method that caused the error.

Exceptions can be generated by the Java run-time system, or they can be manually
generated by your code.

Exceptions thrown by Java relate to fundamental errors that violate the rules of the
Java language or the constraints of the Java execution environment.

Manually generated exceptions are typically used to report some error condition to
the caller of a method.

Java exception handling is managed via five keywords:

Exception Handling Fundamentals

try: Program statements(block of code) that you want to monitor for exceptions are
contained within a try block.

1

catch: If an exception occurs within the try block, it is thrown. Your code can catch this
exception (using catch) and handle it in some rational manner.

2

throw: System-generated exceptions are automatically thrown by the Java run-time system.
To manually throw an exception, use the keyword throw.

3

throws: Any exception that is thrown out of a method must be specified as such by a
throws clause.

4

finally: Any code that absolutely must be executed after a try block completes is put in a
finally block.

5

This is the general form of an exception-handling block:

Exception Handling Fundamentals

try {
// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2

}

// ...
finally {

// block of code to be executed after try block ends
}

Here, ExceptionType is the type of exception that has occurred.

Exception Types
The top-level exception hierarchy is shown here:

All exception types are subclasses of the built-in class
Throwable (is at the top of the exception class
hierarchy).

1

Throwable partitions exceptions into two distinct
branches using two subclasses, i.e. Exception and Error.

2

Exception Class3

Used for exceptional conditions that user programs
should catch.

To create your own custom exception types

There is an important subclass of Exception, called
RuntimeException. Exceptions of this type are
automatically defined for the programs that you
write and include things such as division by zero
and invalid array indexing.

Exception Types
The top-level exception hierarchy is shown here:

Error4

Which defines exceptions that are not expected to
be caught under normal circumstances by your
program.

Exceptions of type Error are used by the Java run-
time system to indicate errors having to do with the
run-time environment, itself.

VirtualMachineError, OutOfMemoryError are
examples of Error.

Error vs. Exception5

An Error indicates serious problem that a
reasonable application should not try to catch.
Exception indicates conditions that a reasonable
application might try to catch.

Uncaught Exception
What happens when you don’t handle exceptions?

This small program includes an expression that intentionally causes a divide-by-zero
error:

class Exc0 {
public static void main(String args[]) {

Int d = 0;
int a = 42 / d;

}
}

When the Java run-time system detects the attempt
to divide by zero, it constructs a new exception
object and then throws this exception.

1

This causes the execution of Exc0 to stop, because
once an exception has been thrown, it must be
caught by an exception handler and dealt with
immediately.

2

In this example, we haven’t supplied any exception
handlers of our own, so the exception is caught by
the default handler provided by the Java run-time
system.

3

Uncaught Exception
What happens when you don’t handle exceptions?

This small program includes an expression that intentionally causes a divide-by-zero
error:

The default handler displays a string describing the
exception, prints a stack trace from the point at
which the exception occurred, and terminates the
program.

5

Here is the exception generated when this example
is executed:

6

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Any exception that is not caught by your program
will ultimately be processed by the default handler.

4

class Exc0 {
public static void main(String args[]) {

Int d = 0;
int a = 42 / d;

}
}

Uncaught Exception
What happens when you don’t handle exceptions?

This small program includes an expression that intentionally causes a divide-by-zero
error:

The simple stack trace for this program includes:7

Class Name: Exe0class Exc0 {
public static void main(String args[]) {

Int d = 0;
int a = 42 / d;

}
}

Here is the exception generated
when this example is executed:

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Method Name: main

File Name: Exe0.java

Line Number: 4

Type of Exception Thrown: ArithmeticException

Java supplies several built-in exception types that
match the various sorts of run-time errors that can
be generated.

8

Uncaught Exception
The stack trace will always show the sequence of method invocations that led up to
the error.
class Exc1 {

static void subroutine() {
int d = 0;
int a = 10 / d;

}
public static void main(String args[]) {

Exc1.subroutine();
}

}

The resulting stack trace from the
default exception handler shows how
the entire call stack is displayed:

java.lang.ArithmeticException: / by zero
at Exc1.subroutine(Exc1.java:4)
at Exc1.main(Exc1.java:7)

The simple stack trace for this program includes:1

Class Name: Exe1

Method Name: main, subroutine

File Name: Exe1.java

Line Number: 7, 4

Type of Exception Thrown: ArithmeticException

The call stack is quite useful for debugging,
because it pinpoints the precise sequence of steps
that led to the error.

2

Using try anc catch
The default exception handler provided by the Java run-time system is useful for
debugging.

You will usually want to handle an exception yourself. Doing so provides two benefits:
It allows you to fix the error.1

It prevents the program from automatically terminating.2

To guard against and handle a run-time error, simply enclose the code that you want
to monitor inside a try block.

Immediately following the try block, include a catch clause that specifies the
exception type that you wish to catch.

Using try anc catch
The following program includes a try block and a catch clause that processes the
ArithmeticException generated by the division-by-zero(DBZ) error:
class Exc2 {
public static void main(String args[]) {
int d, a;
try { // monitor a block of code.

d = 0;
a = 42 / d;
System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch DBZ error
System.out.println("Division by zero.");

}

System.out.println("After catch statement.");
}
} This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try
block is never executed.

1

Once an exception is thrown, program
control transfers out of the try block into the
catch block.

2

Once the catch statement has executed,
program control continues with the next line
in the program following the entire try/catch
mechanism.

3

Using try anc catch
A try and its catch statement form a unit.

The scope of the catch clause is restricted to those statements specified by the
immediately preceding try statement.

A catch statement cannot catch an exception thrown by another try statement
(except in the case of nested try statements).

The statements that are protected by try must be surrounded by curly braces. (That
is, they must be within a block.)

You cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened.

Using try anc catch
// Handle an exception and move on.
import java.util.Random;
class HandleError {

public static void main(String args[]) {
int a=0, b=0, c=0;
Random r = new Random();
for(int i=0; i<32000; i++) {

try {
b = r.nextInt();
c = r.nextInt();

a = 12345 / (b/c);

} catch (ArithmeticException e) {
System.out.println("Division by zero.");
a = 0; //Set a to zero and continue

}
System.out.println("a: " + a);

}
}

}

If either division operation causes a
divide-by-zero error, it is caught, the
value of a is set to zero, and the program
continues.

What will be the output ?

Displaying a Description of an Exception
Throwable overrides the toString() method (defined by Object) so that it returns a
string containing a description of the exception.

You can display this description in a println() statement by simply passing the
exception as an argument (Displaying a description of an exception is valuable in
experimenting with exceptions or debugging).

For example, the catch block in the preceding program can be rewritten like this:

When this version is substituted in the program, and the program is run, each divide-
by-zero error displays the following message:

catch (ArithmeticException e) {
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue

}

Exception: java.lang.ArithmeticException: / by zero

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code.

To handle this type of situation, you can specify two or more catch clauses, each
catching a different type of exception.

After one catch statement executes, the others are bypassed, and execution
continues after the try/catch block.

When an exception is thrown, each catch statement is inspected in order, and the
first one whose type matches that of the exception is executed.

Multiple catch Clauses
The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultipleCatches {

public static void main(String args[]) {
try {

int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
c[42] = 99;

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);

}
System.out.println("After try/catch blocks.");

}
}

java MultipleCatches
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

This program will cause a division-by-zero
exception if it is started with no command-
line arguments, since a will equal zero.

Multiple catch Clauses
The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultipleCatches {

public static void main(String args[]) {
try {

int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
c[42] = 99;

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);

}
System.out.println("After try/catch blocks.");

}
}

java MultipleCatches TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
After try/catch blocks.

It will survive the division if you provide a
command-line argument, setting a to
something larger than zero.

Multiple catch Clauses
When you use multiple catch statements, it is important to remember that exception
subclasses must come before any of their superclasses.

This is because a catch statement that uses a superclass will catch exceptions of that
type plus any of its subclasses. Thus, a subclass would never be reached if it came
after its superclass. Further, in Java, unreachable code is an error.

class SuperSubCatch {
public static void main(String args[]) {
try {

int a = 0; int b = 42 / a;
} catch(Exception e) {

System.out.println("Generic Exception catch.");
} catch(ArithmeticException e) { // ERROR – unreachable

System.out.println("This is never reached.");
}
}
}

Second catch statement is unreachable
because the exception has already been
caught.

1

Since ArithmeticException is a subclass
of Exception, the first catch statement
will handle all Exception-based errors,
including ArithmeticException.

2

This means that the second catch statement
will never execute. To fix the problem,
reverse the order of the catch statements.

3

Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of
another try.

Each time a try statement is entered, the context of that exception is pushed on the
stack.

If an inner try statement does not have a catch handler for a particular exception, the
stack is unwound and the next try statement’s catch handlers are inspected for a
match.

This continues until one of the catch statements succeeds, or until all of the nested
try statements are exhausted.

If no catch statement matches, then the Java run-time system will handle the
exception.

Nested try Statements
// An example of nested try statements.
class NestTry {

public static void main(String args[]) {
try {

int a = args.length;
int b = 42 / a;
System.out.println("a = " + a);
try { // nested try block

if(a==1)
a = a/(a-a); // division by zero

if(a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);
}

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

When you execute the program with no
command-line arguments

java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

Nested try Statements
// An example of nested try statements.
class NestTry {

public static void main(String args[]) {
try {

int a = args.length;
int b = 42 / a;
System.out.println("a = " + a);
try { // nested try block

if(a==1)
a = a/(a-a); // division by zero*

if(a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);
}

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

When you execute the program with one
command-line arguments

java NestTry One
a = 1
Divide by 0: java.lang.ArithmeticException: / by zero

*Since the inner block does not catch this
exception, it is passed on to the outer try block,
where it is handled.

Nested try Statements
// An example of nested try statements.
class NestTry {

public static void main(String args[]) {
try {

int a = args.length;
int b = 42 / a;
System.out.println("a = " + a);
try { // nested try block

if(a==1)
a = a/(a-a); // division by zero

if(a==2) {
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);
}

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

When you execute the program with two
command-line arguments

java NestTry One Two
a = 2
Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException:42

throw
So far, you have only been catching exceptions that are thrown by the Java run-time
system.

However, it is possible for your program to throw an exception explicitly, using the
throw statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of
Throwable.

Primitive types, such as int or char, as well as non-Throwable classes, such as String
and Object, cannot be used as exceptions.

There are two ways you can obtain a Throwable object:
Using a parameter in a catch clause1

Creating one with the new operator.2

throw
The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed.

The nearest enclosing try block is inspected to see if it has a catch statement that
matches the type of exception.

If it does find a match, control is transferred to that statement.

If not, then the next enclosing try statement is inspected, and so on.

If no matching catch is found, then the default exception handler halts the program and prints
the stack trace.

throw
/* Here is a sample program that creates and throws an exception. The handler that catches the exception
rethrows it to the outer handler. */

class ThrowDemo {
static void demoproc() {

try {
//construct an instance of NullPointerException
throw new NullPointerException("demo");

} catch(NullPointerException e) {
System.out.println("Caught inside demoproc.");
throw e; // rethrow the exception

}
}
public static void main(String args[]) {

try {
demoproc();

} catch(NullPointerException e) {
System.out.println("Recaught: " + e);

}
}

}

This program gets two chances to deal with
the same error.

1

First, main() sets up an exception context
and then calls demoproc().

2

The demoproc() method then sets up
another exception-handling context
and immediately throws a new
instance of NullPointerException,
which is caught on the next line.

3

The exception is then rethrown.4

This program generates the following output:
Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

throws
If a method is capable of causing an exception that it does not handle, it must specify
this behavior so that callers of the method can guard themselves against that
exception.

You do this by including a throws clause in the method’s declaration.

A throws clause lists the types of exceptions that a method might throw.

This is necessary for all exceptions, except those of type Error or RuntimeException,
or any of their subclasses.

All other exceptions that a method can throw must be declared in the throws clause.
If they are not, a compile-time error will result.

throws
This is the general form of a method declaration that includes a throws clause:

Here, exception-list is a comma-separated list of the exceptions that a method can
throw.

type method-name(parameter-list) throws exception-list {

// body of method

}

throws
// Example of throws

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}

public static void main(String args[]) {
try {

throwOne();
} catch (IllegalAccessException e) {

System.out.println("Caught " + e);
}

}
} Here is the output of the program:

inside throwOne
caught java.lang.IllegalAccessException: demo

throw vs. throws

finally
finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block.

The finally block will execute whether or not an exception is thrown.

If an exception is thrown, the finally block will execute even if no catch statement
matches the exception.

Any time a method is about to return to the caller from inside a try/catch block, via
an uncaught exception or an explicit return statement, the finally clause is also
executed just before the method returns.

finally block useful for closing file handles and freeing up any other resources that
might have been allocated at the beginning of a method with the intent of disposing
of them before returning.

The finally clause is optional. However, each try statement requires at least one
catch or a finally clause.

finally
// Demonstrate finally.
class FinallyDemo {

// Throw an exception out of the method.
static void procA() {

try {
System.out.println("inside procA");
throw new RuntimeException("demo");

} finally {
System.out.println("procA's finally");

}
}

// Return from within a try block.
static void procB() {

try {
System.out.println("inside procB");
return;

} finally {
System.out.println("procB's finally");

}
}

// Execute a try block normally.
static void procC() {

try {
System.out.println("inside procC");

} finally {
System.out.println("procC's finally");

}
}

public static void main(String args[]) {
try {

procA();
} catch (Exception e) {

System.out.println("Exception caught");
}
procB();
procC();

}
}

finally

// Execute a try block normally.
static void procC() {

try {
System.out.println("inside procC");

} finally {
System.out.println("procC's finally");

}
}

public static void main(String args[]) {
try {

procA();
} catch (Exception e) {

System.out.println("Exception caught");
}
procB();
procC();

}
}

Here is the output generated by the program:

inside procA
procA's finally
Exception caught
inside procB
procB's finally
inside procC
procC's finally

final vs. finally vs. finalize

final vs. finally vs. finalize

class FinalExample{

public static void main(String[] args){

final int x=100;

x=200; //Compile Time Error

}

}

class FinallyExample{
public static void main(String[] args){

try{
int x=300;

}catch(Exception e){
System.out.println(e);

}
finally{

System.out.println("finally block is executed");
}

}
}

class FinalizeExample{

public void finalize(){

System.out.println("finalize called");

}

public static void main(String[] args){

FinalizeExample f1=new FinalizeExample();

FinalizeExample f2=new FinalizeExample();

f1=null;

f2=null;

System.gc();

}

}

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes.

The classes which directly inherit Throwable class except RuntimeException and Error
are known as checked exceptions e.g. IOException, SQLException etc. Checked
exceptions are checked at compile-time.

The classes which inherit RuntimeException are known as unchecked exceptions
e.g. ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException
etc. Unchecked exceptions are not checked at compile-time, but they are checked at
runtime.

Java’s Built-in Exceptions
Java’s Unchecked RuntimeException Subclasses Defined in java.lang

Java’s Built-in Exceptions
Java’s Checked Exceptions Defined in java.lang

Hierarchy of Java Exception Classes

Hierarchy of Java Exception Classes

Creating your own Exception Subclass
Sometimes you may want to create your own exception types to handle situations
specific to your applications.

Define a subclass of Exception (which is, of course, a subclass of Throwable).

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable.

Exception defines four public constructors:

Thus, all exceptions, including those that you create, have the methods defined by
Throwable available to them.

Exception()
Exception(String msg)

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)] The chained exception feature allows

you to associate another exception with
an exception.

Creating your own Exception Subclass
The Methods Defined by Throwable

Creating your own Exception Subclass
The Methods Defined by Throwable

Creating your own Exception Subclass
// This program creates a custom exception type.

class MyException extends Exception {
private int detail;
MyException(int a) {

detail = a;
}
public String toString() { //overrides toString()

return "MyException[" + detail + "]";
}

}
class ExceptionDemo {

static void compute(int a) throws MyException {
System.out.println("Called compute(" + a + ")");
if(a > 10)

throw new MyException(a);

System.out.println("Normal exit");
}

public static void main(String args[]) {
try {

compute(1);
compute(20);

} catch (MyException e) {
System.out.println("Caught " + e);

}
}

}

Here is the output of the program:
Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

