
Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 13: Interface

Course webpage
[http://www.mkbhandari.com/mkwiki]

Programming in Java

http://www.mkbhandari.com/mkwiki

Outline

Introduction to Interface1

Default Interface Method2

Using static Methods in an Interface3

Interfaces are syntactically similar to classes, but they lack instance variables, and, as
a general rule, their methods are declared without any body(abstract methods).

The interface in Java is a mechanism to achieve abstraction. There can be only
abstract methods in the Java interface, not method body. It is used to achieve
abstraction and multiple inheritance in Java.

It cannot be instantiated just like the abstract class.

Once it is defined, any number of classes can implement an interface. Also, one class
can implement any number of interfaces.(A class can only extend from a single class,
but a class can implement multiple interfaces)

Interfaces are designed to support dynamic method resolution at run time.

Interface

All methods declared in an interface are implicitly public and abstract.
All variables declared in an interface are implicitly public, static and final.

Why use interfaces?

Interface

[Source: (3)]

Loose coupling means reducing the
dependencies of a class that uses the
different classes directly.

1

Tight coupling means classes and objects
are dependent on one another.

2

An interface is defined much like a class. This is a simplified general form of an
interface:

Defining an Interface

access interface name {

return-type method-name1(parameter-list);
return-type method-name2(parameter-list);

type final-varname1 = value;
type final-varname2 = value;

//...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

An interface is declared by using the
interface keyword.

1

The access can be either defult or public.2

A class that implements an interface must
implement all the methods declared in the
interface.

4

It provides total abstraction; means all the
methods in an interface are declared with
the empty body (Abstract methods), and all
the fields are public, static and final by
default.

3

Here is an example of an interface definition. It declares a simple interface that
contains one method called callback() that takes a single integer parameter.

Defining an Interface

interface Callback {

void callback(int param);

}

Once an interface has been defined, one or more classes can implement that
interface.

Implementing Interfaces

To implement an interface, include the implements clause in a class definition, and
then create the methods required by the interface.

The general form of a class that includes the implements clause looks like this:

class classname [extends superclass] [implements interface [, interface...]] {

// class-body
}

If a class implements more than one interface, the interfaces are separated with a
comma.

If a class implements two interfaces that declare the same method, then the same
method will be used by clients of either interface.

The methods that implement an interface must be declared public.

Implementing Interfaces

Also, the type signature of the implementing method must match exactly the type
signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier:

class Client implements Callback {

// Implement Callback's interface
public void callback(int p) {

System.out.println("callback called with " + p);
}

}

Notice that callback() is declared using the public access modifier. REMEMBER When
you implement an interface method, it must be declared as public.

Implementing Interfaces

// Finally to test interface

public class InterfaceTest{

public static void main(String args[]){
// Can’t instantiate an interface directly
// Callback c1 = new Callback();
// c1.callback(21);

Client c2 = new Client();

c2.callback(42);

}
}

What will be the output ?

It is both permissible and common for classes that implement interfaces to define
additional members of their own.

Implementing Interfaces

For example, the following version of Client implements callback() and adds the
method nonIfaceMeth():

class Client implements Callback {

// Implement Callback's interface
public void callback(int p) {

System.out.println("callback called with " + p);
}

void nonIfaceMeth() {
System.out.println("Classes that implement interfaces " +

"may also define other members, too.");
}

}

You can declare variables as object references that use an interface rather than a
class type.

Accessing Implementations Through Interface References

Any instance of any class that implements the declared interface can be referred to
by such a variable.

When you call a method through one of these references, the correct version will be
called based on the actual instance of the interface being referred to. This is one of
the key features of interfaces.

The method to be executed is looked up dynamically at run time, allowing classes to
be created later than the code which calls methods on them.

The calling code can dispatch through an interface without having to know anything
about the “callee.” (This process is similar to using a superclass reference to access a
subclass object)

The following example calls the callback() method via an interface reference variable:

Accessing Implementations Through Interface References

/* How an interface reference variable
can access an implementation object */

class TestIface {
public static void main(String args[]) {

Callback c = new Client();

c.callback(42);
}

}

The output of this program is shown here:

callback called with 42

Variable c is declared to be of the interface type
Callback, yet it was assigned an instance of
Client.

1

Although c can be used to access the callback()
method, it cannot access any other members of
the Client class.

2

An interface reference variable has knowledge
only of the methods declared by its interface
declaration.

3

Thus, c could not be used to access
nonIfaceMeth() since it is defined by Client but
not Callback.

4

The following example demonstrate the polymorphic power of interface reference.

Accessing Implementations Through Interface References

// Another implementation of Callback.

class AnotherClient implements Callback {
// Implement Callback's interface
public void callback(int p) {

System.out.println("Another version of callback");
System.out.println("p squared is " + (p*p));

}
}
class TestIface2 {

public static void main(String args[]) {
Callback c = new Client();
AnotherClient ob = new AnotherClient();
c.callback(42);
c = ob; // c now refers to AnotherClient object
c.callback(42);

}
}

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

The version of callback() that is called is
determined by the type of object that c refers to
at run time.

If a class includes an interface but does not fully implement the methods required by
that interface, then that class must be declared as abstract.

Partial Implementations

abstract class Incomplete implements Callback {
int a, b;
void show() {

System.out.println(a + " " + b);

}
// no implementation for callback()

}

Here, the class Incomplete does not implement callback() and must be declared as
abstract.

Any class that inherits Incomplete must implement callback() or be declared abstract
itself.

An interface can be declared a member of a class or another interface. Such an
interface is called a member interface or a nested interface.

Nested Interfaces

A nested interface can be declared as public, private, or protected. This differs from a
top-level interface, which must either be declared as public or use the default access
level.

Thus, outside of the class or interface in which a nested interface is declared, its name
must be fully qualified.

When a nested interface is used outside of its enclosing scope, it must be qualified by
the name of the class or interface of which it is a member.

Nested Interfaces
// This class contains a member interface.
class A {

// this is a nested interface
public interface NestedIF {

boolean isNotNegative(int x);
}

}
// B implements the nested interface.
class B implements A.NestedIF {

public boolean isNotNegative(int x) {
return x < 0 ? false: true;

}
}
class NestedIFDemo {

public static void main(String args[]) {
// use a nested interface reference
A.NestedIF nif = new B();
if(nif.isNotNegative(10))

System.out.println("10 is not negative");
if(nif.isNotNegative(-12))

System.out.println("this won't be displayed");
}

}

Class A defines a member interface called
NestedIF and that it is declared public.

1

Class B implements the nested interface by
specifying:

implements A.NestedIF

2

Inside the main() method, an A.NestedIF
reference called nif is created, and it is assigned
a reference to a B object.

3

Because B implements A.NestedIF, this is legal.4

Applying Interfaces
/* Multiple implementations of an interface through an
interface reference variable */

interface MyInterface{

void print(String msg);
}

class MyClass1 implements MyInterface{
public void print(String msg){

System.out.println(msg + “ : ” +msg.length());
}

}

class MyClass2 implements MyInterface{
public void print(String msg){

System.out.println(msg.length() + “ : ” +msg);
}

}

Public class InterfaceApplyTest{

public static void main(String args[]){

MyClass1 mc1 = new MyClass1();
MyClass2 mc2 = new MyClass2();

MyInterface mi; /*create an interface
reference variable */

mi = mc1;
mi.print(“Hello World”); // MyClass1 print()

mi = mc2;
mi.print(“Hello World”); // MyClass2 print()

}
}

Accessing multiple implementations of an interface through an interface reference variable is the
most powerful way that Java achieves run-time polymorphism.

Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply
declaring an interface that contains variables that are initialized to the desired values.

When you include that interface in a class (that is, when you “implement” the
interface), all of those variable names will be in scope as constants.

This is similar to using a header file in C/C++ to create a large number of #defined
constants or const declarations.

If an interface contains no methods, then any class that includes such an interface
doesn’t actually implement anything. It is as if that class were importing the constant
fields into the class name space as final variables.

Variables in Interfaces
// Example to implement an automated “decision maker”
import java.util.Random;
interface SharedConstants {

int NO = 0;
int YES = 1;
int MAYBE = 2;
int LATER = 3;
int SOON = 4;
int NEVER = 5;

}
class Question implements SharedConstants {

Random rand = new Random();
int ask() {

int prob = (int) (100 * rand.nextDouble());
if (prob < 30)

return NO; // 30%
else if (prob < 60)

return YES; // 30%
else if (prob < 75)

return LATER; //15%
else if (prob < 98)

return SOON; // 13%
else

return NEVER; // 2%

}
}
class AskMe implements SharedConstants {

static void answer(int result) {
switch(result) {

case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");
break;

case MAYBE:
System.out.println("Maybe");
break;

case LATER:
System.out.println("Later");
break;

case SOON:
System.out.println("Soon");
break;

case NEVER:
System.out.println("Never");
break;

Variables in Interfaces
}

}

public static void main(String args[]) {

Question q = new Question();

answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());

}
}

Here is the output of a sample run of this program.

Later
Soon
No
Yes

Note that the results are different each time it is run.

This program makes use of one of Java’s
standard classes: Random.

1

Random contains several methods that allow
you to obtain random numbers in the form
required by your program.

2

the method nextDouble() returns random
numbers in the range 0.0 to 1.0.

3

Extending Interfaces
One interface can inherit another by use of the keyword extends. The syntax is the
same as for inheriting classes.

When a class implements an interface that inherits another interface, it must provide
implementations for all methods required by the interface inheritance chain.

A class extends another class, an interface extends another interface, but a class
implements an interface.

[Source: (3)]

Extending Interfaces
// One interface can extend another.
interface A {

void meth1();
void meth2();

}
// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {

void meth3();
}

// This class must implement all of A and B
class MyClass implements B {

public void meth1() {
System.out.println("Implement meth1().");

}
public void meth2() {

System.out.println("Implement meth2().");
}
public void meth3() {

System.out.println("Implement meth3().");
}

}

class IFExtend {
public static void main(String arg[]) {

MyClass ob = new MyClass();

ob.meth1();
ob.meth2();
ob.meth3();

}
}

What will happen if you remove the
implementation for meth1() in MyClass ?

Q

Extending Interfaces
// One interface can extend another.
interface A {

void meth1();
void meth2();

}
// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {

void meth3();
}

// This class must implement all of A and B
class MyClass implements B {

public void meth1() {
System.out.println("Implement meth1().");

}
public void meth2() {

System.out.println("Implement meth2().");
}
public void meth3() {

System.out.println("Implement meth3().");
}

}

class IFExtend {
public static void main(String arg[]) {

MyClass ob = new MyClass();

ob.meth1();
ob.meth2();
ob.meth3();

}
}

What will happen if you remove the
implementation for meth1() in MyClass ?

Q

This will cause a compile-time error. Any class
that implements an interface must implement all
methods required by that interface, including
any that are inherited from other interfaces.

A

Default Interface Methods
Prior to JDK 8, an interface could not define any implementation whatsoever.

This meant that for all previous versions of Java, the methods specified by an
interface were abstract, containing no body.

The release of JDK 8 has changed this by adding a new capability to interface called
the default method.

A default method lets you define a default implementation for an interface method.

Its primary motivation was to provide a means by which interfaces could be expanded without
breaking existing code.

An interface still cannot have instance variables. The defining difference between an interface
and a class is that a class can maintain state information, but an interface cannot. Furthermore,
it is still not possible to create an instance of an interface by itself. It must be implemented by a
class.
Interfaces that you create will still be used primarily to specify what and not how. However, the
inclusion of the default method gives you added flexibility.

Default Interface Methods
//Default interface Method Demo
public interface MyIF {

int getNumber();

// This is a default method. Notice that it provides
// a default implementation.
default String getString() {

return "Default String";
}

}

// Implement MyIF.
class MyIFImp implements MyIF {

public int getNumber() {
return 100;

}

// getString() can be allowed to default.
}

// Use the default method.
class DefaultMethodDemo {

public static void main(String args[]) {

MyIFImp obj = new MyIFImp();

// Can call getNumber(), because it is explicitly
// implemented by MyIFImp:
System.out.println(obj.getNumber());

// Can also call getString(), because of default
// implementation:
System.out.println(obj.getString());

}
}

The output is shown here:

100
Default String

Default Interface Methods

class MyIFImp2 implements MyIF {

// Here, implementations for both getNumber() and getString() are provided.

public int getNumber() {
return 100;

}
public String getString() {

return "This is a different string.";
}

}

The output is shown here:

100
This is a different string.

It is both possible and common for an implementing class to define its own
implementation of a default method.

Multiple Inheritance Issues
Java does not support the multiple inheritance of classes, because of ambiguity.

Default methods do offer a bit of what one would normally associate with the
concept of multiple inheritance.

For example, you might have a class that implements two interfaces. If each of these
interfaces provides default methods, then some behavior is inherited from both.

Thus, to a limited extent, default methods do support multiple inheritance of
behavior. But in such a situation, it is possible that a name conflict will occur.

Observe the code fragments shown in the next slide to understand the scenarios
when a name conflict situation may occur.

Multiple Inheritance Issues
//Both interfaces define default methods

interface Alpha {
default void reset(){

System.out.println(“Alpha’s reset”);
}

}

interface Beta{
default void reset(){

System.out.println(“Beta’s reset”);
}

}

class TestClass implements Alpha, Beta{
public void reset(){

System.out.println(“TestClass’ reset”);
}

}

Both Alpha and Beta provide a method called
reset() for which both declare a default
implementation.

1

Is the version by Alpha or the version by Beta
used by MyClass?

2

Multiple Inheritance Issues
//One interfaces extends another, both define default methods.

interface Alpha {
default void reset(){

System.out.println(“Alpha’s reset”);
}

}

interface Beta extends Alpha{
default void reset(){

System.out.println(“Beta’s reset”);
// Alpha.super.reset();

}
}

class TestClass implements Beta{

}

Which version of the default method is used?1

what if MyClass provides its own implementation
of the method?

2

Alpha.super.reset();
if Beta wants to refer to Alpha’s default reset()Q

Multiple Inheritance Issues
To handle previous two cases and other similar types of situations, Java defines a set
of rules that resolves such conflicts.

In all cases, a class implementation takes priority over an interface default implementation.
Ex: if MyClass provides an override of the reset() default method, MyClass’ version is used.
Ex: if MyClass implements both Alpha and Beta, both defaults are overridden by MyClass’
implementation.

1

If a class implements two interfaces that both have the same default method, but the class
does not override that method, then an error will result.
Ex: if MyClass implements both Alpha and Beta, but does not override reset(), then an error will
occur.

2

If one interface inherits another, with both defining a common default method, the
inheriting interface’s version of the method takes precedence.
Ex: If Beta extends Alpha, then Beta’s version of reset() will be used.

3

It is possible to explicitly refer to a default implementation in an inherited interface by
using a new form of super. Its general form is shown here:

4

InterfaceName.super.methodName() //Alpha.super.reset();

static Methods in an Interface

// An example of a static method in an interface
public interface MyIF {

int getNumber();

default String getString() {
return "Default String";

}

// This is a static interface method.
static int getDefaultNumber() {

return 0;
}

}

Like static methods in a class, a static method defined by an interface can be called
independently of any object.

Here is the general form:
InterfaceName.staticMethodName

The getDefaultNumber() method can be called,
as shown here:

int defNum = MyIF.getDefaultNumber();

1

No implementation or instance of MyIF is
required to call getDefaultNumber() because it
is static.

2

static interface methods are not inherited by
either an implementing class or a subinterface.

3

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

