
Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 12: Packages

Course webpage
[http://www.mkbhandari.com/mkwiki]

Programming in Java

http://www.mkbhandari.com/mkwiki

Outline

Introduction to Packages1

Access Protection2

Importing Packages3

A package (act as Container) is a collection of related java entities (such as classes,
interfaces, exceptions, errors and enums), a great way to achieve reusability, can be
considered as means to achieve data encapsulation.

Packages in Java provides a mechanism for partitioning the class name space into
more manageable chunks.

The Package is both a naming and a visibility control mechanism.

The advantages of packages are:
Removes naming collision: by prefixing the class name with a package name.

Categorize the classes and interfaces so that they can be easily maintained.

Packages are stored in a hierarchical manner and are explicitly imported into new
class definitions.

Provides access control: Besides public and private, Java has two access control modifiers-
protected and default (that are related to package).

Packages

Packages
Package in java can be categorized in two form, built-in package and user-defined
package.

Built-in packages: standard packages which are part of JRE or Java API. Some of the
commonly used built-in packages are:

Defining a Package
To create a package is quite easy: simply include a package statement as the first
statement in a Java source file.

Any classes declared within that file will belong to the specified package.

The package statement defines a name space in which classes are stored.

If you omit the package statement, the class names are put into the default package,
which has no name, and suitable for short, sample programs but inadequate for real
applications.

Most of the time, for real applications, you will define a package for your code, using
the general form:

package pkg; // for example, package MyPackage;

Defining a Package
package MyPackage; // creates a package called MyPackage;

Java uses file system directories to store packages.1

For example, the .class files for any classes you declare to be part of MyPackage must be
stored in a directory called MyPackage. Remember that case is significant, and the directory
name must match the package name exactly.

2

More than one file can include the same package statement. The package statement simply
specifies to which package the classes defined in a file belong. It does not exclude other
classes in other files from being part of that same package. Most real-world packages are
spread across many files.

3

You can create a hierarchy of packages. To do so, simply separate each package name from
the one above it by use of a period. The general form is:

4

package pkg1[.pkg2[.pkg3]];

Defining a Package
package MyPackage; // creates a package called MyPackage;

A package hierarchy must be reflected in the file system of your Java development system.
For example, a package declared as:

5

package java.awt.image; //needs to be stored in java/awt/image in a UNIX environment.

Be sure to choose your package names carefully. You cannot rename a package without
renaming the directory in which the classes are stored.

6

Package Example
// A simple package
package MyPack;
class Balance {

String name;
double bal;
Balance(String n, double b) {

name = n;
bal = b;

}
void show() {

if(bal < 0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}
class AccountBalance {

public static void main(String args[]) {
Balance current[] = new Balance[3];
current[0] = new Balance("K. J. Fielding", 123.23);
current[1] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);
for(int i=0; i<3; i++) { current[i].show(); }

}
}

How to compile Java Package program1

How to run Java Package program.2

Syntax: javac -d directory javafilename

//creates package MyPack in current directory (.)
and saves the generated .class files(Balance.class
and AccountBalance.class) in it. This step can be
performed manually as well.

Example: javac -d . AccountBalance.java

java MyPack.AccountBalance

This program displays the following output :

K. J. Fielding: $123.23
Will Tell: $157.02
--> Tom Jackson: $-12.33

* 3 ways are there to locate/run Java Packages
program (other two are discussed in next slide)

Finding Packages and CLASSPATH
How does the Java run-time system know where to look for packages that you create?

By default, the Java run-time system uses the current working directory as its starting
point. Thus, if your package is in a subdirectory of the current directory, it will be found.

1

You can specify a directory path or paths by setting the CLASSPATH environmental
variable. (in Unix/Linux systems)

2

You can use the -classpath option with java and javac to specify the path to your classes.3

export CLASSPATH=.:/home/UserName/Desktop/MyJavaPrograms;
// Assuming your packages are saved under Desktop/MyJavaPrograms;

java -classpath /home/UserName/Desktop/MyJavaPrograms/ MyPack.AccountBalance
// Assuming your packages are saved under Desktop/MyJavaPrograms;
// Save all .class files of your program(AccountBalance.java) in MyPack.

Already Discussed in previous slide

Access Protection
Packages act as containers for classes and other subordinate packages

Subclasses in the same package1

Classes act as containers for data and code

The class is Java’s smallest unit of abstraction

Because of the interplay between classes and packages, Java addresses four
categories of visibility for class members:

Non-subclasses in the same package2

Subclasses in different package3

Classes that are neither in the same package nor subclasses4

Access Protection
The three access modifiers, private, public, and protected, provide a variety of ways to
produce the many levels of access required by these categories.

The following applies only to members of classes

[Source: (1)]

Access Protection
Anything declared public can be accessed from anywhere.

Anything declared private cannot be seen outside of its class.

When a member does not have an explicit access specification, it is visible to
subclasses as well as to other classes in the same package (default access).

If you want to allow an element to be seen outside your current package, but only to
classes that subclass your class directly, then declare that element protected.

Access Protection
A non-nested class has only two possible access levels

When a class is declared as public, it is accessible by any other code.

If a class has default access, then it can only be accessed by other code within its
same package.

When a class is public, it must be the only public class declared in the file, and the file
must have the same name as the class

default and public (others are abstract and final)

An Access Example

This is file Protection.java:

package p1;

public class Protection {
int n = 1;
private int n_pri = 2;
protected int n_pro = 3;
public int n_pub = 4;

public Protection() {
System.out.println("base constructor");
System.out.println("n = " + n);
System.out.println("n_pri = " + n_pri);
System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file Derived.java:

package p1;

class Derived extends Protection {

Derived() {
System.out.println("derived constructor");
System.out.println("n = " + n);

// private member in Protection class
// System.out.println("n_pri = "+ n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

// Shows all combinations of the access control modifiers.
// This example has two packages and five classes.

An Access Example

This is file SamePackage.java:

package p1;

class SamePackage {

SamePackage() {
Protection p = new Protection();
System.out.println("same package constructor");

System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);
}

}

This is test file for package P1, DemoP1.java:

// Demo package p1.

package p1;

// Instantiate the various classes in p1.
public class DemoP1 {

public static void main(String args[]) {

Protection ob1 = new Protection();

Derived ob2 = new Derived();

SamePackage ob3 = new SamePackage();
}

}

An Access Example
How to compile?

Compile all classes one by one in
sequence:

$ javac -d . Protection.java
$ javac -d . Derived.java
$ javac -d . SamePackage.java
$ javac -d . DemoP1.java

 OR

1

Compile all classes all together but in
sequence
$ javac -d . Protection.java Derived.java

SamePackage.java DemoP1.java

2

How to run?
$ java p1.DemoP1.javaR

This program displays the following output :

base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived constructor
n = 1
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
same package constructor
n = 1
n_pro = 3
n_pub = 4

An Access Example

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {

Protection2() {
System.out.println("derived other package

 constructor");

// class or package only
// System.out.println("n = " + n);

// class only
// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}
}

This is file OtherPackage.java:

package p2;

class OtherPackage {

OtherPackage() {
p1.Protection p = new p1.Protection();
System.out.println("other package constructor");

// class or package only
// System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only
// System.out.println("n_pro = " + p.n_pro);

 System.out.println("n_pub = " + p.n_pub);
}

}

An Access Example

This is test file for package P2, DemoP2.java:

// Demo package p2.

package p2;

// Instantiate the various classes in p2.
public class DemoP2 {

public static void main(String args[]) {

Protection2 ob1 = new Protection2();

OtherPackage ob2 = new OtherPackage();
}

}

This program displays the following output :

base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
derived other package constructor
n_pro = 3
n_pub = 4
base constructor
n = 1
n_pri = 2
n_pro = 3
n_pub = 4
other package constructor
n_pub = 4

Importing Packages
Java includes the import statement to bring certain classes, or entire packages, into
visibility.

Once imported, a class can be referred to directly, using only its name. (Since classes
within packages must be fully qualified with their package name or names, it could become tedious to
type in the long dot-separated package path name for every class you want to use.)

The import statement saves a lot of typing. (If you are going to refer to a few dozen classes in
your application)

In a Java source file, import statements occur immediately following the
packagestatement (if it exists) and before any class definitions.

The general form of the import statement:
import pkg1[.pkg2].(classname|*);

For example:
import java.util.Date; //Explicit Date class
import java.io.*; //Entire io package

Here pkg1 is the top-level package, and pkg2 is the
subordinate package inside the outer package
separated by a dot (.).

1

There is no practical limit on the depth of a
package hierarchy, except that imposed by the file
system.

2

Importing Packages
All of the standard Java classes included with Java are stored in a package called java.

The basic language functions are stored in a package inside of the java package called
java.lang (implicitly imported by the compiler for all programs).

This is equivalent to the following line being at the top of all of your programs:
import java.lang.*;

The import statement is optional. Any place you use a class name, you can use its fully
qualified name, which includes its full package hierarchy.

For example:
import java.util.*;
class MyDate extends Date {
}

The same example without the import statement looks like this:
class MyDate extends java.util.Date { // fully-qualified name
}

Importing Packages
/* when a package is imported, only those items within the
package declared as public will be available to non-
subclasses in the importing code. */

package MyPack;

/* Now, the Balance class, its constructor, and its show()
method are public. This means that they can be used by non-
subclass code outside their package */

public class Balance {
String name;
double bal;
public Balance(String n, double b) {

name = n;
bal = b;

}
public void show() {

if(bal < 0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
}

}

/* Here TestBalance imports MyPack and is then able to
make use of the Balance class: */

import MyPack.Balance; //import MyPack.*;

class TestBalance {
public static void main(String args[]) {

/* Because Balance is public, you may use
Balance class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show();
}

}

Remove the public specifier from the
Balance class and then try compiling
TestBalance.

A

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

