
Programming in Java

Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 11: Inheritance(2)

Course webpage
[http://www.mkbhandari.com/mkwiki]

http://www.mkbhandari.com/mkwiki

Outline

Method Overriding1

Dynamic Method Dispatch2

Using Abstract Classes3

Using Final with Inheritance4

The Object Class5

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass, then the method in the subclass is said to
override the method in the superclass.

When an overridden method is called from within its subclass, it will always refer to
the version of that method defined by the subclass. The version of the method
defined by the superclass will be hidden.

Method Overriding

// Method overriding.
class A {

int i, j;
A(int a, int b) {

i = a;
j = b;

}
// display i and j
void show() {

System.out.println("i and j: " + i + " " + j);
}

}
class B extends A {

int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
// display k – this overrides show() in A
void show() {

System.out.println("k: " + k);
}

}

class Override {
public static void main(String args[]) {

B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B

}
}

This program displays the following output :

k: 3

When show() is invoked on an object of type
B, the version of show() defined within B
is used.

1

That is, the version of show() inside B
overrides the version declared in A.

2

How to access the superclass version of an
overridden method?

Q

Method Overriding

// To access Superclass version of show()

class B extends A {
int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
void show() {

super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}

This program displays the following output :

i and j: 1 2
k: 3

Here, super.show() calls the superclass
version of show().

1

What if names and the type signatures of
the two methods are non-identical?

Q

If you wish to access the superclass version of an overridden method, you can do so
by using super.

Method overriding occurs only when the
names and the type signatures of the two
methods are identical.

2

Method Overriding

// Methods with differing type signatures are overloaded – not overridden.
class A {

int i, j;
A(int a, int b) {

i = a; j = b;
}
// display i and j
void show() {

System.out.println("i and j: " + i + " " + j);
}

}
class B extends A {

int k;
B(int a, int b, int c) {

super(a, b);
k = c;

}
void show(String msg) { // overload show()

System.out.println(msg + k);
}

}

class Override {
public static void main(String args[]) {

B subOb = new B(1, 2, 3);
subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}

This program displays the following output :

This is k: 3
i and j: 1 2

The version of show() in B takes a string
parameter. This makes its type signature
different from the one in A, which takes no
parameters.

1

Therefore, no overriding (or name hiding) takes
place – so show() is overloaded here.

2

Method Overriding - Summary

[Source: (3)]

Method Overriding - Summary

[Source: (3)]

Method Overriding - Summary

[Source: (3)]

//Java Program to demonstrate the real scenario of Java Method Overriding
//where three classes are overriding the method of a parent class.
class Bank{

int getRateOfInterest(){
return 0;

}
}
class SBI extends Bank{

int getRateOfInterest(){
return 8;

}
}
class ICICI extends Bank{

int getRateOfInterest(){
return 7;

}
}
class AXIS extends Bank{

int getRateOfInterest(){
return 9;

}
}

//Test class to create objects and call the methods
class Test{

public static void main(String args[]){
SBI s=new SBI();
ICICI i=new ICICI();
AXIS a=new AXIS();
System.out.println("SBI Rate of Interest: “

+s.getRateOfInterest());
System.out.println("ICICI Rate of Interest: "

+i.getRateOfInterest());
System.out.println("AXIS Rate of Interest: "

+a.getRateOfInterest());
}

}

Output:
SBI Rate of Interest: 8
ICICI Rate of Interest: 7
AXIS Rate of Interest: 9

Method Overriding vs Overloading

[Source: (3)]

Method Overriding vs Overloading

[Source: (3)]

//Method Overloading example
class OverloadingExample{

static int add(int a,int b){
return a+b;

}

static int add(int a,int b,int c){
return a+b+c;

}
}

//Method Overriding example
class Animal{

void eat(){
System.out.println("eating...");

}
}

class Dog extends Animal{

void eat(){
System.out.println("eating bread...");

}
}

Dynamic Method Dispatch

Method overriding forms the basis for one of Java’s most powerful concepts: dynamic
method dispatch.

Dynamic method dispatch is the mechanism by which a call to an overridden method
is resolved at run time, rather than compile time.

Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

As aready discussed, a superclass reference variable can refer to a subclass
object. Java uses this fact to resolve calls to overridden methods at run time.

When an overridden method is called through a superclass reference, Java
determines which version of that method to execute based upon the type of the
object being referred to at the time the call occurs.

Dynamic Method Dispatch

Thus, this determination is made at run time.

When different types of objects are referred to, different versions of an overridden
method will be called.

Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

In other words, it is the type of the object being referred to (not the type of the
reference variable) that determines which version of an overridden method will be
executed.

Therefore, if a superclass contains a method that is overridden by a subclass, then
when different types of objects are referred to through a superclass reference
variable, different versions of the method are executed.

Dynamic Method Dispatch

// Dynamic Method Dispatch
class A {

void callme() {
System.out.println("Inside A's callme method");

}
}

class B extends A {
// override callme()
void callme() {

System.out.println("Inside B's callme method");
}

}

class C extends A {
// override callme()
void callme() {

System.out.println("Inside C's callme method");
}

}

class Dispatch {
public static void main(String args[]) {

A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

r = c; // r refers to a C object
r.callme(); // calls C's version of callme

}
}

Dynamic Method Dispatch

The output from the program is shown here:

Inside A's callme method
Inside B's callme method
Inside C's callme method

NOTE: the version of callme() executed is
determined by the type of object being referred
to at the time of the call.

class Dispatch {
public static void main(String args[]) {

A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

r = b; // r refers to a B object
r.callme(); // calls B's version of callme

r = c; // r refers to a C object
r.callme(); // calls C's version of callme

}
}

Why Overridden Methods?

The overridden methods allow Java to support run-time polymorphism.

Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods.

Overridden methods are another way that Java implements the “one interface,
multiple methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater
specialization.

Used correctly, the superclass provides all elements that a subclass can use directly.

It also defines those methods that the derived class must implement on its own.

Why Overridden Methods?

This allows the subclass the flexibility to define its own methods, yet still enforces a
consistent interface.

Overridden methods are another way that Java implements the “one interface,
multiple methods” aspect of polymorphism.

Thus, by combining inheritance with overridden methods, a superclass can define the
general form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that
object-oriented design brings to bear on code reuse and robustness.

The ability of existing code libraries to call methods on instances of new classes
without recompiling while maintaining a clean abstract interface is a profoundly
powerful tool.

Applying Method Overriding

// Using run-time polymorphism (a more practical example)
class Figure {

double dim1;
double dim2;
Figure(double a, double b) {

dim1 = a;
dim2 = b;

}
double area() {

System.out.println("Area for Figure is undefined.");
return 0;

}
}
class Rectangle extends Figure {

Rectangle(double a, double b) {
super(a, b);

}
double area() { // override area for rectangle

System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

Applying Method Overriding
class Triangle extends Figure {

Triangle(double a, double b) {
super(a, b);

}
double area() { // override area for right triangle

System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}
class FindAreas {

public static void main(String args[]) {
Figure f = new Figure(10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref;
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());
Figref = f;
System.out.println("Area is " + figref.area());

}
}

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Area is 40
Area for Figure is undefined.
Area is 0

Through the dual mechanisms of
inheritance and run-time polymorphism,
it is possible to define one consistent
interface that is used by several different,
yet related, types of objects.

1

In this case, if an object is derived from
Figure, then its area can be obtained by
calling area().

2

The interface to this operation is the same
no matter what type of figure is being used.

3

Using Abstract Classess

Abstraction is a process of hiding the implementation details and showing only
functionality to the user. Abstraction lets you focus on what the object does instead
of how it does it.

It is used to achieve abstraction which is one of the pillar of Object Oriented
Programming(OOP).

A class which is declared as abstract is known as an abstract class. It can have
abstract and non-abstract methods. It needs to be extended and its method
implemented. It cannot be instantiated.

To declare a class abstract, use this general form :

abstract class class-name{
//body of class

}

Using Abstract Classess

To declare an abstract method, use this general form:

abstract type name(parameter-list); // no method body is present.

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier.

Thus, a subclass must override them—it cannot simply use the version defined in the
superclass.

These methods are sometimes referred to as subclasser responsibility because they
have no implementation specified in the superclass.

A method which is declared as abstract and does not have implementation is known
as an abstract method.

Using Abstract Classess

[Source: (3)]

Using Abstract Classess

// A Simple demonstration of abstract.
abstract class A {

abstract void callme();
// concrete methods are still allowed in abstract classes
void callmetoo() {

System.out.println("This is a concrete method.");
}

}
class B extends A {

void callme() { // must override*
System.out.println("B's implementation of callme.");

}
}
class AbstractDemo {

public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo();

}
}

Notice that no objects of class A are declared
in the program

1

class A implements a concrete method (non-
abstract) called callmetoo()

2

Abstract classes can include as much
implementation as they see fit.

3

Abstract classes can not be instantiated, but
can create object references, because Java’s
approach to run-time polymorphism
isimplemented through the use of
superclass references.

4

* ohterwise Compile Time error will occur

Using Abstract Classess

// Improving th Figure class shown earlier
// Using abstract methods and classes
abstract class Figure{

double dim1;
double dim2;
Figure(double a, double b) {

dim1 = a;
dim2 = b;

}
// area() is now an abstract method
abstract double area();

}
class Rectangle extends Figure {

Rectangle(double a, double b) {
super(a, b);

}
// Must override area()*
double area() {

System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;

}
}

class Triangle extends Figure {
Triangle(double a, double b) {

super(a, b);
}
// Must override area()*
double area() {

System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;

}
}
class AbstractAreas {

public static void main(String args[]) {
 // Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref; // this is OK, no object is created
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());

}
}

* ohterwise Compile Time error will occur

Using final with Inheritance

The keyword final has three uses:

Create the equivalent of a named constant (already discussed).1

Using final to Prevent Overriding

To disallow a method from being overridden, specify final as a modifier at the start of its
declaration.

Methods declared as final cannot be overridden.

2

Using final to Prevent Inheritance

To prevent a class from being inherited, precede the class declaration with final.

Declaring a class as final implicitly declares all of its methods as final, too.

3

Can we declare declare a class as both abstract and final ?

Using final to Prevent Overridding

class A {

final void meth() {
System.out.println("This is a final method.");

}
}

class B extends A {

void meth() { // ERROR! Can't override*
System.out.println("Illegal!");

}
}

* Compile Time error will occur

Using final to Prevent Inheritance

final class A {
//...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A
//...

}

NOTE: A final class can not have abstract methods and
an abstract class can not be declared final.

The Object Class

There is one special class, Object, defined by Java.

All other classes are subclasses of Object. That is, Object is a superclass of all other
classes.

This means that a reference variable of type Object can refer to an object of any other
class.

Also, since arrays are implemented as classes, a variable of type Object can also refer
to any array.

Object defines some methods, which means that they are available in every object.

The Object Class

*

*

*

*

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

