
Programming in Java

Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 10: Inheritance

Course webpage
[http://www.mkbhandari.com/mkwiki]

http://www.mkbhandari.com/mkwiki

Outline

1

Using super

Inheritance Basics

2

Creating a Multilevel Hierarchy3

When Constructors are Executed4

Inheritance

One of the important concept/feature of Object Oriented Programming.

It allows/facilitates Reusability through the Hierarchical Classification.

Superclass 1

Subclass2

Defines the general aspects of an object (attributes common to a set of objects) .

Specialized version of a Superclass.
Inherits the Superclass (common traits/properties).
Adds things that are unique to it (its own, unique elements).
Also known as derived class or child class.

Also known as base class or parent class.

[Example of Inheritance]

It can be used to create any number of more specific
subclasses.

Types of Inheritance in Java

X

[Types of Inheritance]

Types of Inheritance in Java
X

Inheritance Basics

The extends keyword is used to inherit a class.

The general form of a class declaration that inherits a Superclass is shown here:

class subclass-name extends superclass-name {

// body of class

}

#Note:
superclass is also a completely independent,
stand-alone class, can be used by itself.

You can only specify one superclass for
any subclass that you create.

1

Multiple inheritance is not supported in
Java.

2

You can create a hierarchy of
inheritance in which a subclass
becomes a superclass of another
subclass.

3

However, no class can be a superclass
of itself.

4

Inheritance Basics – A simple example of Inheritance

// Create a superclass.
class A {

int i, j;
void showij() {

System.out.println("i and j: " + i + " " + j);
}

}

// Create a subclass by extending class A.
class B extends A {

int k;
void showk() {

System.out.println("k: " + k);
}
void sum() {

System.out.println("i+j+k: " + (i+j+k));
}

}

i
j
showij()

class A obj.

k
showk()
sum()

class B obj.

i
j
showij()

Inheritance Basics – A simple example of Inheritance

// Create a superclass.
class A {

int i, j;
void showij() {

System.out.println("i and j: " + i + " " + j);
}

}

// Create a subclass by extending class A.
class B extends A {

int k;
void showk() {

System.out.println("k: " + k);
}
void sum() {

System.out.println("i+j+k: " + (i+j+k));
}

}

class SimpleInheritance {
public static void main(String args []) {

A superOb = new A();
B subOb = new B();

// The superclass may be used by itself.
superOb.i = 10; superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();
System.out.println();

/* The subclass has access to all public members
of its superclass. */
subOb.i = 7; subOb.j = 8; subOb.k = 9;
System.out.println("Contents of subOb: ");
subOb.showij();
subOb.showk();
System.out.println();
System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

}
}

Inheritance Basics – A simple example of Inheritance

class SimpleInheritance {
public static void main(String args []) {

A superOb = new A();
B subOb = new B();

// The superclass may be used by itself.
superOb.i = 10; superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();
System.out.println();

/* The subclass has access to all public members
of its superclass. */
subOb.i = 7; subOb.j = 8; subOb.k = 9;
System.out.println("Contents of subOb: ");
subOb.showij();
subOb.showk();
System.out.println();
System.out.println("Sum of i, j and k in subOb:");
subOb.sum();

}
}

Contents of superOb:
i and j: 10 20
Contents of subOb:
i and j: 7 8
k: 9
Sum of i, j and k in subOb:
i+j+k: 24

I = 10
J = 20
showij()

I = 7
J = 8
showij()

superOb

K = 9
showk()
sum()

subOb

OUTPU
T

Member Access and Inheritance

// Create a superclass.
class A {

int i; // default access
private int j; // private to A
void setij(int x, int y) {

i = x;
j = y;

}
}

// A's j is not accessible here.
class B extends A {

int total;
void sum() {

total = i + j; // ERROR, j is not accessible here
}

}

class Access {
public static void main(String args[]) {

B subOb = new B();
subOb.setij(10, 12);
subOb.sum();
System.out.println("Total is " + subOb.total);

}
}

Although a subclass includes all of the
members of its superclass, it cannot access
those members of the superclass that have
been declared as private.

1

In a class hierarchy, private members
remain private to their class.

2

#REMEMBER A class member that has been
declared as private will remain private to its
class. It is not accessible by any code
outside its class, including subclasses.

3

A More Practical Example

// This program uses inheritance to extend Box.
class Box {

double width;
double height;
double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor

width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}

// compute and return volume
double volume() {

return width * height * depth;
}

}

A More Practical Example

// Here, Box is extended to include weight.

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double m) {

width = w;
height = h;
depth = d;
weight = m;

}
}

class DemoBoxWeight {
public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;
vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " +

mybox1.weight);
System.out.println();
vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " +

mybox2.weight);
}

}

A More Practical Example

class DemoBoxWeight {
public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;
vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " +

mybox1.weight);
System.out.println();
vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " +

mybox2.weight);
}

}

OUTPU
T
Volume of mybox1 is
3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

A More Practical Example

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any
number of more specific subclasses.

Each subclass can precisely tailor its own classification.

// Here, Box is extended to include color.

class ColorBox extends Box {

int color; // color of box

ColorBox(double w, double h, double d, int c) {
width = w;
height = h;
depth = d;
color = c;

}
}

A Superclass Variable Can Reference a Subclass Object

class RefDemo {
public static void main(String args[]) {

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37); // weightbox is a reference to BoxWeight objects
Box plainbox = new Box(); // plainbox is a reference to Box objects.
double vol;
vol = weightbox.volume();
System.out.println("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " + weightbox.weight);

// assign BoxWeight reference to Box reference, since BoxWeight is a subclass of Box
plainbox = weightbox;
vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox does not define a weight member.
1. when a reference to a subclass object is assigned to a superclass reference variable, you will have access
 only to those parts of the object defined by the superclass.
2. Because the superclass has no knowledge of what a subclass adds to it */

// System.out.println("Weight of plainbox is " + plainbox.weight);
}

}

Using Super

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double m) {

width = w;
height = h;
depth = d;
weight = m;

}
}

So far inheritance were not implemented as efficiently or as robustly as they could
have been. For example:

Using Super

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double m) {

width = w;
height = h;
depth = d;
weight = m;

}
}

So far inheritance were not implemented as efficiently or as robustly as they could
have been. For example:

The constructor for BoxWeight explicitly initializes
the width, height, and depth fields of Box.

1

Two issues of concern:2

Duplicate code in its superclass (inefficient)
But it implies that a subclass must be granted
access to these members

However, there will be times when you will want to
create a superclass that keeps the details of its
implementation to itself (that is, that keeps its data
members private).

3

In this case, there would be no way for a subclass to
directly access or initialize these variables on its own.

4

Using Super

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h,

 double d, double m) {

width = w;
height = h;
depth = d;
weight = m;

}
}

So far inheritance were not implemented as efficiently or as robustly as they could
have been. For example:

Since encapsulation is a primary attribute of OOP, it
is not surprising that Java provides a solution to this
problem.

5

Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

6

super has two general forms:7

Can be used to Call the superclass’ constructor

Can be used to access a member of the superclass
(private members)

Using Super to Call Superclass Constructors

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {

double weight; // weight of box

// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass
constructor

weight = m;
}

}

A subclass can call a constructor defined by its superclass by use of the following
form of super:

super(arg-list);
Here, arg-list specifies any arguments
needed by the constructor in the
superclass

0

Thus, super() always refers to the
superclass immediately above the
calling class.

2

This is true even in a multileveled
hierarchy.

3

Also, super() must always be the first
statement executed inside a subclass
constructor.

4

When a subclass calls super(), it is
calling the constructor of its immediate
superclass.

1

Using Super to Call Superclass Constructors

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {

double weight; // weight of box

// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass
constructor

weight = m;
}

}

A subclass can call a constructor defined by its superclass by use of the following
form of super:

super(arg-list);
Here, BoxWeight() calls super() with the
arguments w, h, and d. This causes the
Box constructor to be called, which
initializes width, height, and depth using
these values.

5

BoxWeight no longer initializes these
values itself. It only needs to initialize
the value unique to it: weight.

6

This leaves Box free to make these
values private if desired.

7

Since constructors can be overloaded,
super() can be called using any form
defined by the superclass.

8

Using Super to Call Superclass Constructors

// A complete implementation of BoxWeight.
class Box {

private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor

width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}

// compute and return volume
double volume() {

return width * height * depth;
}

}

Using Super to Call Superclass Constructors

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified.
BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor
weight = m;

}

// default constructor
BoxWeight() {

super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double m) {

super(len);
weight = m;

}
}

Using Super to Call Superclass Constructors

class DemoSuper {
public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1); // clone

double vol;

vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);
System.out.println();

Using Super to Call Superclass Constructors

vol = mybox3.volume();
System.out.println("Volume of mybox3 is " + vol);
System.out.println("Weight of mybox3 is " + mybox3.weight);
System.out.println();

vol = myclone.volume();
System.out.println("Volume of myclone is " + vol);
System.out.println("Weight of myclone is " + myclone.weight);
System.out.println();

vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);
System.out.println("Weight of mycube is " + mycube.weight);
System.out.println();

}
}

Using Super to Call Superclass Constructors

This program generates the following output:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Using Super to Call Superclass Constructors

// construct clone of an object
BoxWeight(BoxWeight ob) {

super(ob);
weight = ob.weight;

}

Notice that super() is passed an object of type BoxWeight—not of type Box.

This still invokes the constructor Box(Box ob).

As mentioned earlier, a superclass variable can be used to reference any object derived from that
class.

Thus, we are able to pass a BoxWeight object to the Box constructor. Of course, Box only has
knowledge of its own members.

Using Super to access member of Superclass

The second form of super acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used.

This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of
a subclass hide members by the same name in the superclass.

Using Super to access member of Superclass

// Using super to overcome name hiding.
class A {

int i;
}

// Create a subclass by extending class A.
class B extends A {

int i; // this i hides the i in A
B(int a, int b) {

super.i = a; // i in A
i = b; // i in B

}
void show() {

System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}
}

class UseSuper {
public static void main(String args[]) {

B subOb = new B(1, 2);
subOb.show();

}
}

This program displays the following:

i in superclass: 1
i in subclass: 2

Using Super - Summary

[Source: (3)]

Creating a Multilevel Hierarchy

You can build hierarchies that contain as many layers of inheritance as you like.

As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.

For example, given three classes called A, B, and C, C can be a subclass of B, which is a
subclass of A.

When this type of situation occurs, each subclass inherits
all of the traits found in all of its superclasses.

In this case, C inherits all aspects of B and A.

NOTE: The class hierarchy, including A, B, and C, can be in
one file. In Java, all three classes can be placed into their
own files and compiled separately. In fact, using separate
files is the norm, not the exception, in creating class
hierarchies.

Creating a Multilevel Hierarchy

// Extend BoxWeight to include shipping costs.
// A complete implementation of BoxWeight.
class Box {

private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob) { // pass object to constructor

width = ob.width;
height = ob.height;
depth = ob.depth;

}

// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}

// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}

// compute and return volume
double volume() {

return width * height * depth;
}

}

Creating a Multilevel Hierarchy

// Add weight
class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);
weight = ob.weight;

}

// constructor when all parameters are specified.
BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor
weight = m;

}

// default constructor
BoxWeight() {

super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double m) {

super(len);
weight = m;

}
}

Creating a Multilevel Hierarchy

// Add shipping costs.
class Shipment extends BoxWeight {

double cost;
// construct clone of an object
Shipment(Shipment ob) { // pass object to constructor

super(ob);
cost = ob.cost;

}

// constructor when all parameters are specified
Shipment(double w, double h, double d, double m, double c) {

super(w, h, d, m); // call superclass constructor
cost = c;

}

// default constructor
Shipment() {

super();
cost = -1;

}

// constructor used when cube is created
Shipment(double len, double m, double c) {

super(len, m);
cost = c;

}
}

Creating a Multilevel Hierarchy

class DemoShipment {
public static void main(String args[]) {

Shipment shipment1 = new Shipment(10, 20, 15, 10, 3.41);
Shipment shipment2 = new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();
System.out.println("Volume of shipment1 is " + vol);
System.out.println("Weight of shipment1 is " + shipment1.weight);
System.out.println("Shipping cost: $" + shipment1.cost);
System.out.println();

vol = shipment2.volume();
System.out.println("Volume of shipment2 is " + vol);
System.out.println("Weight of shipment2 is "+ shipment2.weight);
System.out.println("Shipping cost: $" + shipment2.cost);

}
}

The output of this program is:

Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

When Constructors are Executed?

When a class hierarchy is created, in what order are the constructors for the classes
that make up the hierarchy executed?

For example, given a subclass called B and a superclass called A, is A’s constructor
executed before B’s, or vice versa?

The answer is that in a class hierarchy, constructors complete their execution in
order of derivation, from superclass to subclass.

Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used.

If super() is not used, then the default or parameterless constructor of each
superclass will be executed.

When Constructors are Executed?

// Demonstrate when constructors are executed.
// Create a super class.
class A {

A() {
System.out.println("Inside A's constructor.");

}
}
// Create a subclass by extending class A.
class B extends A {

B() {
System.out.println("Inside B's constructor.");

}
}
// Create another subclass by extending B.
class C extends B {

C() {
System.out.println("Inside C's constructor.");

}
}

The output of this program is:

Inside A's constructor
Inside B's constructor
Inside C's constructor

class CallingCons {
public static void main(String args[]) {

C c = new C();
}

}

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

