
Programming in Java

Mahesh Kumar
Assistant Professor (Adhoc)

Department of Computer Science
Acharya Narendra Dev College

University of Delhi

Lecture 07: A Closer Look at Methods and Classes(2)

Course webpage
[http://www.mkbhandari.com/mkwiki]

http://www.mkbhandari.com/mkwiki

Outline

1

Introducing Access Control

Recursion

2

Understanding static3

Introducing final4

Recursion

Java supports recursion.

Recursion is the process of defining something in terms of itself.

As it relates to Java programming, recursion is the attribute that allows a method to
call itself.

A method that calls itself is said to be recursive.

Recursion

// A simple example of recursion.
class Factorial {

// this is a recursive method
int fact(int n) {

int result;
if(n==1)

return 1;
result = fact(n-1) * n;
return result;

}
}

class Recursion {
public static void main(String args[]) {

Factorial f = new Factorial();
System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

}
}

Q What will be the output?

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

Recursion

// A simple example of recursion.
class Factorial {

// this is a recursive method
int fact(int n) {

int result;
if(n==1)

return 1;
result = fact(n-1) * n;
return result;

}
}

class Recursion {
public static void main(String args[]) {

Factorial f = new Factorial();
System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

}
}

fact(3) = fact(2) * 31

fact(2) = fact(1) * 22

fact(1) = 13

Decomposition

Recursion

// A simple example of recursion.
class Factorial {

// this is a recursive method
int fact(int n) {

int result;
if(n==1)

return 1;
result = fact(n-1) * n;
return result;

}
}

class Recursion {
public static void main(String args[]) {

Factorial f = new Factorial();
System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));

}
}

fact(2) = 1 * 22

fact(3) = 2 * 31
Backtracking

fact(3) = fact(2) * 31

fact(2) = fact(1) * 22

fact(1) = 13

Decomposition

Recursion

When a method calls itself, new local variables and parameters are allocated storage
on the stack, and the method code is executed with these new variables from the
start

As each recursive call returns, the old local variables and parameters are removed
from the stack, and execution resumes at the point of the call inside the method.

Recursive versions of many routines may execute a bit more slowly than the iterative
equivalent because of the added overhead of the additional method calls.

Many recursive calls to a method could cause a stack overrun. Because storage for
parameters and local variables is on the stack and each new call creates a new copy
of these variables, it is possible that the stack could be exhausted.

If this occurs, the Java run-time system will cause an exception.

Recursion

The main advantage to recursive methods is that they can be used to create clearer
and simpler versions of several algorithms than can their iterative relatives.

For example: Quick Sort Algorithm, some types of AI-related algorithms

When writing recursive methods, you must have an if statement somewhere to force
the method to return without the recursive call being executed(base condition). If
you don’t do this, once you call the method, it will never return.

Recursion

// Another example that uses recursion.
class RecTest {

int values[];
RecTest(int i) {

values = new int[i];
}
// display array -- recursively
void printArray(int i) {

if(i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-1]);

}
}
class Recursion2 {

public static void main(String args[]) {
RecTest ob = new RecTest(10);
for(int i=0; i<10; i++) {

ob.values[i] = i;
}
ob.printArray(10);

}
}

Recursion

// Another example that uses recursion.
class RecTest {

int values[];
RecTest(int i) {

values = new int[i];
}
// display array -- recursively
void printArray(int i) {

if(i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-1]);

}
}
class Recursion2 {

public static void main(String args[]) {
RecTest ob = new RecTest(10);
for(int i=0; i<10; i++) {

ob.values[i] = i;
}
ob.printArray(10);

}
}

Q What will be the output?

[0] 0
[1] 1
[2] 2
[3] 3
[4] 4
[5] 5
[6] 6
[7] 7
[8] 8
[9] 9

Introducing Access Control

Access/Visibility specifiers/modifiers/control are the mechanism by which you can
precisely control access to the various members of a class.

Java’s access modifiers are:

How a member can be accessed is determined by the access modifier attached to its
declaration.

Java supplies a rich set of access modifiers. Some aspects of access control are
related mostly to inheritance or packages.

public - accessible from every where1

private - within the class 2

protected - applies only when inheritance is involved3

default – only within the same package.4

Introducing Access Control

Introducing Access Control

// This program demonstrates the difference between public and private.

class Test {
int a; // default access
public int b; // public access
private int c; // private access

// methods to access c
void setc(int i) { // set c's value

c = i;
}

int getc() { // get c's value
return c;

}
}

class AccessTest {
public static void main(String args[]) {

Test ob = new Test();
// These are OK, a and b may be accessed directly
ob.a = 10;
ob.b = 20;

// This is not OK and will cause an error
ob.c = 100; // Error

// You must access c through its methods
ob.setc(100); // OK

System.out.println("a, b, and c: " + ob.a + " " +
ob.b + " " + ob.getc());

}
}

Understanding Static

There will be times when you will want to define a class member that will be used
independently of any object of that class

Normally, a class member must be accessed only in conjunction with an object of its
class.

However, it is possible to create a member that can be used by itself, without
reference to a specific instance.

To create such a member, precede its declaration with the keyword static.

Understanding Static

When a member is declared static, it can be accessed before any objects of its class
are created, and without reference to any object.

You can declare both methods and variables to be static.

Instance variables declared as static are, essentially, global variables.

The most common example of a static member is main(). main() is declared as static
because it must be called before any objects exist.

When objects of its class are declared, no copy of a static variable is made. Instead, all
instances of the class share the same static variable.

Understanding Static

Methods declared as static have several restrictions:

If you need to do computation in order to initialize your static variables, you can
declare a static block that gets executed exactly once, when the class is first loaded.

They can only directly call other static methods.1

They can only directly access static data.2

They cannot refer to this or super in any way.3

Understanding Static

// Demonstrate static variables, methods, and blocks.

class UseStatic {

static int a = 3;
static int b;

static void meth(int x){
System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);

}
static {

System.out.println("Static block initialized.");
b = a * 4;

}
public static void main(String args[]) {

meth(42);
}

}

 What will be the output? Q

As soon as the UseStatic class is loaded, all of the
static statements are run.

1

First, a is set to 3, then the static block executes,
which prints a message and then initializes b to
a*4 or 12.

2

Then main() is called, which calls meth(), passing
42 to x.

3

The three println() statements refer to the two
static variables a and b, as well as to the local
variable x.

4

Understanding Static

// Demonstrate static variables, methods, and blocks.

class UseStatic {

static int a = 3;
static int b;

static void meth(int x){
System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);

}
static {

System.out.println("Static block initialized.");
b = a * 4;

}
public static void main(String args[]) {

meth(42);
}

}

 What will be the output?
Static block initialized.
x = 42
a = 3
b = 12

Q

As soon as the UseStatic class is loaded, all of the
static statements are run.

1

First, a is set to 3, then the static block executes,
which prints a message and then initializes b to
a*4 or 12.

2

Then main() is called, which calls meth(), passing
42 to x.

3

The three println() statements refer to the two
static variables a and b, as well as to the local
variable x.

4

Understanding Static

// Accessing Static members outside the class

class StaticDemo {
static int a = 42;
static int b = 99;

static void callme() {
System.out.println("a = " + a);

}
}

class StaticByName {
public static void main(String args[]) {

StaticDemo.callme();
System.out.println("b = " + StaticDemo.b);

}
}

 What will be the output? Q

Understanding Static

// Accessing Static members outside the class

class StaticDemo {
static int a = 42;
static int b = 99;

static void callme() {
System.out.println("a = " + a);

}
}

class StaticByName {
public static void main(String args[]) {

StaticDemo.callme();
System.out.println("b = " + StaticDemo.b);

}
}

 What will be the output?
a = 42
b = 99

Q

Introducing Final

A variable can be declared as final.

Doing so prevents its contents from being modified, making it, essentially, a constant.

We must initialize a final variable when it is declared. You can do this in one of two
ways:

You can give it a value when it is declared (commonly used).1

You can assign it a value within a constructor (blank final variable).2

final int FILE_NEW = 1; //1. Can be used as constant in the subsequent parts of your program

final int MAX_MARKS = 100; // 2. Common coding convention to use all uppercase identifiers for final fields

final int SPEEDLIMIT=60;

Introducing Final

In addition to fields, both method parameters and local variables can be declared
final.

Declaring a parameter final prevents it from being changed within the method.

Declaring a local variable final prevents it from being assigned a value more than
once.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. (Will be discussed in Inheritance)

References

R Reference for this topic

[Book: Java: The Complete Reference, Ninth Edition: Herbert Schildt]
https://www.amazon.in/Java-Complete-Reference-Herbert-Schildt/dp/0071808558

[Web: Java T Point tutorial]
https://www.javatpoint.com/java-tutorial

[Web: GeeksforGeeks]
https://www.geeksforgeeks.org/java/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

