
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

BHCS15B: System Programming

Course Web Page
(www.mkbhandari.com/mkwiki)

Assembler

Outline

Introduction to System Software1

A Simple Manual Assembler3

Assembler Design Process4

Major Data Structures Used.1

Two-Pass Assembler2

Single-Pass Assembler3

Load-and-go Assembler5

Object File Formats [self study]6

Introduction to Assembler2

Introduction
System Software:

Consists of a variety of programs that support the operation of a computer.

The software makes it possible for the user to focus on an application without
needing to know the details of how the machine works internally.

Introduction (2)

Preprocessor

Compiler

Loader/Linker

Assembler

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Machine Code

Absolute Machine Code

Library files,
Relocatable Object
Code

Introduction (3)

Preprocessor

Compiler

Loader/Linker

Assembler

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Machine Code

Absolute Machine Code

Introduction (4)

Text editor: create and modify the programs

Compiler: translate programs into machine language

Linker: performs the linking task

Loader: load machine language program into
memory and prepares for execution

Assembler: translate assembly program into
machine language

Macro processor: translate macros instructions into
its definition

Debugger: detect errors in the program

Different types of System Software:

Library files,
Relocatable Object
Code

OS: You control all the above by interacting with the
operating system.

Introduction (5)
Input-Output of an Assembler

[Source 3]

Introduction (6)
Input-Output of an Linker

[Source 3]

Introduction (7)
Input-Output of an Loader

[Source 3]

Program Development Flow ->

[Source 2]

System Software and Machine Architecture
One characteristic in which most system software differ from application
software is machine dependency.

System programs are intended to support the operation and use of the
computer itself, rather than any particular application.

Application programs are primary concerned with the solution of some problem,
using the computer as a tool.

Example:
Assembler translates mnemonic instructions into machine code.

Compilers must generate machine language code.

OS is directly concerned with the management of nearly all of the resources of a
computing system.

 - instruction formats, addressing modes, etc..

 - number and type of registers, machine instructions available, etc..

System Software and Machine Architecture (2)
Important machine structures to the design of system software:

Memory Structure

Registers

Data Formats

Instruction Formats

Instruction set

Addressing Modes

System Software and Machine Architecture (3)

The general design and logic of an assembler is basically the same on most
computers.

Some of the code optimization techniques used by compilers are independent of
the target machine.

The process of linking together independently assembled subprograms do not
usually depend on the computer being used.

Some aspects of system software that do not directly depend upon the
machine architecture are:

System Software and Machine Architecture (4)

Features that are fundamental

Features that are architecture dependent

While understanding any system software, we should identify:

Extended features that are relatively machine independent

Major design options for structuring the software

Optional features

Introduction to Assembler
Assembler is the tool (translator/language processor) to convert assembly
language into the machine language one:

- Understandable by the processor that executes it.

The complexity of the process depends upon various factors:

Size of the instruction set

Different addressing modes supported

Length of the program being translated, and so on.

For the simplest case, the assembly may be done manually (hand assembly)
however, for the complex processors the automation is a must.

The role of an Assembler

Assembler

Assembly Language Program Machine Language Program

Statement 1

Statement 2

Statement i

Statement n

Instruction/
DataInstruction/Data

Instruction/Data

Instruction/Data

The role of an Assembler (2)
Apart from producing the machine language code, some more information
is needed to facilitate loading of program at arbitrary start address in the
memory.

It needs corrections to the address sensitive values like:
operand addresses
jump targets, etc.

The assemblers normally generate code starting at offset zero.

For multi-section programs, each section is assembled starting at offset
zero, so that maximum flexibility exists regarding their loading into the
memory for execution.

Information about all the sections and their attributes is also needed to
produce the final executable version of the program.

A Simple Manual Assembler
A simple hypothetical accumulator based processor.

Accumulator register (A): all memory load and store operations.

Arithmetic and logic operations: mostly use A as source register and also the
destination register.

B and C registers: 32-bit general purpose registers.

Indexed registers (I): Arithmetic is permitted on I also.

Addressing modes: immediate and indirect through the indexed register.

All memory addresses are 32-bit wide.

Register-to-register data movement is also supported.

The instructions
and the associated
codes shown →

The machine
instructions,is
called as Machine
Opcode Table
(MOT) for the
simple processor

A Simple Manual Assembler (2)
Our Assembler supports only one pseudo-opcode dd to reserve and initialize
four bytes memory locations.

In a general assembler there may be a number of pseudo-opcodes
supported, stored in a table known as Pseudo Opcode Table (POT).

Let us look at a simple program written in this language to sum ten
numbers stored in the memory. -->>

Symbol Table:
 - contains all variables and labels defined in the program.

 - helps in the assembly process and is also is needed by linker and loader.

A Simple Manual Assembler (3)
A program to add 10 numbers

A Simple Manual Assembler (4)
A program to add 10 numbers The assembly process start at offset zero.

Location Counter: a variable to keep the track
of next offset in which the generated code is
to be placed, is also initialized to zero.

Line 1: a declaration variable X having 10, 32-
bit numbers.

Assembler reserves space and initializes
accordingly (dd).

Location counter is incremented to 40.

The variable X along with its attributes is
entered into the symbol table.

A Simple Manual Assembler (5)
A program to add 10 numbers Line 2: The next four locations are reserved

to store sum.

Line 3: This instruction is assembled into five
bytes

Assembler reserves space and initializes it
to zero.

Location counter is incremented to 44.

The variable sum is also entered into the
symbol table.

The location 44 contains the opcode 3, and
location 45-48 holds the offset of X, which
is zero in this case

The location counter is updated accordingly.

A Simple Manual Assembler (6)
A program to add 10 numbers Line 6: The label L1 is entered into symbol

table along with its offset from the beginning
of the program.

Line 11: When we try to assemble the
instruction JE L2, we have not seen the L2.
Thus, the offset of L2 is not known.

When we assemble the instruction JMP L1,
we already know the offset of L1 and the code
can be generated accordingly.

There are several ways of handling this type
of situation.

For the time being, we assume the offset of
L2 to be 83(53 hex.), and accordingly
generate the machine code.

1 00000000 0A000000 14000000
28000000 05000000
07000000 09000000
35000000 08000000
0B000000 0D000000

X dd 10, 20, 40, 5, 7, 9, 53, 8, 11, 13

2 00000028 00000000 sum dd 0

3 0000002C 03000000 MVI I, X

4 00000031 01000000 MVI B, 0

5 00000036 02000000 MVI C, 0

6 0000003B 06 L1: LOADI

7 0000003C 09 ADD C

8 0000003D 0E MOV C, A

9 0000003E 11 INC B

10 0000003F 140A000000 CMP B, 10

11 00000044 1753000000 JE L2

12 00000049 1604000000 ADDI 4

13 0000004E 183B000000 JMP L1

14 00000053 0528000000 L2: STORE sum

15 00000058 1900000000 STOP

The list file of
the program
to add 10
numbers.

A Simple Manual Assembler (7)
The list file table consists of four columns:

The first column of the table notes the source line number.1

The second column gives the location counter value in hexadecimal.2

The third column contains the code generated.3

The source line is noted in the last column.4

There are several address sensitive points in the code that need to be
corrected if the program is to be loaded starting from a memory address
other than zero. (Program Relocation)

A Simple Manual Assembler (8)
The symbol table of the program

Name Type Offset

X variable 0

sum variable 40

L1 label 59

L2 label 83

A Simple Manual Assembler (9)
Address sensitive places for the code.

Address Reason

0000002D X needs correction

00000044 jump target L2 modified

0000004E jump target L1 modified

00000054 sum needs correction

Program Relocation: If the program is loaded from location L (for example),
the value L should be added to all these locations to ensure correct execution of
the program. (will be covered in detail in Linking and loading techniques)

Assembler Design Process
There are various design issues and techniques involved.

To understand the process better, we can think of program to consisting of
a few components as follows:

Machine instructions: tells what to do, includes all the machine opcode like:
MOV, ADD, SUB, JMP, and so on.

1

2

3

4

Variable declarations: the declarations of the storage space, machine
instructions may modify these data.

Assembler directives: to produce the code in structured manner so that different
sections of the program can be handled efficiently and perhaps independently.

Comments: used by programmer for documentation purposes. For example:
ADD B ; Adds contents of B with A and stores sum in A.

Major Data Structures Used
The major tables involved with the assembly process are:

Machine Opcode Table (MOT)1

2

3

Pseudo Opcode Table (POT)

Symbol Table (SYMTAB)

Machine Opcode Table (MOT) and Pseudo Opcode Table (POT) are static in nature.

On the other hand contents of Symbol Table (SYMTAB) depends upon the
program being assembled – the variables and labels declared within it. Thus, Symbol
Table is dynamic in nature.

Machine Opcode Table
It hold the opcodes used by the processor for different instruction
mnemonics. Typical entries of this table are:

Mnemonic Size Opcode

Mnemonics field contains various instruction mnemonics.

Size field contains the size of the instructions (typically in bytes).

Opcode field contains the machine code corresponding to the mnemonics.

The basic structure of MOT may be varied significantly based upon
instruction set and also on the designer of the assembler.

Organization of MOT
Organization of any table is determined by the set of operations, namely,
insertion, deletion, search, update, etc. to be performed on the table entries.

Since MOT is static, insertions, deletions, and updates are not there. Only
search operation is there.

The frequency of these operations often dictate the organization to be
used.

In fact, the assembler needs to refer to this table to translate each line of
the source file. Thus, the structure of MOT be such that the search
operation can be carried out very fast

A very good data structure providing constant time O(1) searching algorithm
is the hash table.

Organization of MOT (2)
A suitable choice of hash function has to be made to convert a mnemonic
into an integer values to be used as index to the table.

Good collision resolution strategies are needed to take care of this situation

A basic problem with hash table is the collision of data items (two or more
mnemonics mapping to the same location in the MOT)

The calculation of hash Indexes for a set of mnemonics using hash function
h(s) (where s is the mnemonic) given by:

h(s)=(Sum of ASCII values of the characters of s) mod 23

Hash table index calculation

Organization of MOT (3)
Some other alternative data structures can be used:

Binary Search Tree (BST)1

2 Linked List (LL) : indexed by the first alphabet of the mnemonic.

Mnemonics are sorted in the alphabetical order and then inserted into a BST to
ensure the worst case access time to be equal to the depth of the tree.

With proper height balancing, a tree with n nodes provides the worst case access
time of O(log n).

The array is indexed by the first letter of the mnemonic.

Binary Search Tree organization of MOT
For example processor with mnemonics MVI, LOAD, STORE, LOADI, STORI,
ADD, MOV, INC, CMP, JE, JMP, ADDI, STOP, a BST may be as shown:

Array of Linked List organization of MOT
The array is indexed by the first letter of the mnemonic:

Pseudo Opcode Table
It contains the pseudo opcodes supported by the assembler, used to
reserve memory space and possibly initialize it.

There can be several pseudo
opcodes as imagined by the
assembler designer.

DB : define byte

DW : define word

DD : define double-word / float

DQ : define double-precision float

DT : define extended-precision float

RESB : reserve byte

RESW : reserve word

RESD : reserve double-word / float

RESQ : reserve double-precision float

REST : reserve extended-precision float

NASM pseudo opcodes are as shown: ->

Pseudo Opcode Table (2)
A typical POT may have the structure as shown below:

Pseudo-opcode Type Size Initializable

Type field identifies type of data.

Size field holds the size of the field (typically in bytes).

Initializable field is boolean, specifying whether the memory locations
corresponding to the pseudo opcode can have initial values.

Pseudo-opcode field contains the name of the pseudo-opcode.

 - DB, DW, DD, DQ, and DT, the corresponding locations contain some initial values.

 - RESB, RESW, RESD, RESQ, and REST, the locations cannot be initialized.

Symbol Table (SYMTAB)
An essential data structure used by the assembler to remember information
about identifiers appearing in the program to be assembled.

The type of symbols that are stored in symbol table are: variables,
procedures, defined constants, labels, etc.

Symbol table is designed by the assembler writer to facilitate the assembly
process.

The identifiers stored in the symbol table may vary widely from one
assembler to another, even for the same assembly language.

Information in Symbol Table
For an identifier stored in the symbol table, following are the associated
information stored:

Type: The type of the identifier, it defines whether it is a variable, a label, a
procedure name, and so on. Variables are further identified by type like byte,
word, double word, etc.

Name: The name of the identifier, may be stored directly in the table or the table
entry may point to another character string (in an associated string table) .

Locaton: This is an offset within the program where the identifier is defined.

Fundamental operations and Data Structures on SYMTAB
The fundamental operations on SYMTAB are:

Enter a new symbol in the table.

Lookup for a symbol.

Modify information about a symbol stored earlier in the table.

To create a SYMTAB several data structures exist, the commonly used are:
Linear Table

Ordered list

Tree

Hash table

Linear Table
A simple array of records with each record corresponding to an identifier of
the program.

The entries are made in the same order in which they appear in the program.

x : RESB

y : RESW

z : RESD

 procedure abc

 L1 :

Example: Consider the following definitions: The linear Table will store the information as shown:

Name Type Location

x byte offset of x

y word offset of y

z Double word offset of z

abc procedure offset of abc

L1 label offset of L1

Symbo Table

Others: Ordered List, Tree, Hash Table
Ordered List: a variation of linear tables in which a list organization is used.

Sort the list, then use Binary Search to access table in O(log n) time.

Tree organization of the SYMTAB may be used to speed up the access.

Each entry is represented by a node of the tree.

Insertion becomes costly.

Based on string comparison(less-than / greater-than) of names with reference
node, entries are put on appropriate left/right subtree.

Average lookup time for an entry in the tree is O(log n); however if tree becomes
unbalanced height, will require O(n) search time. (AVL trees for height balancing)

Others: Ordered List, Tree, Hash Table (2)

Hash Table: provides the fastest mechanism to access the symbols.

Similar to those for MOT, except it is dynamic in nature.

Designing good hash function and good collision resolution strategies are needed.

Two-Pass Assembler
The two-pass assembly process scans the input assembly language program
twice, called as Pass I and Pass II.

Pass I: different data structures (tables) are filled up with the information
related to the symbols and sections defined in the program.

Both the passes uses a variable, location counter (lc) to computer current
offset from the beginning of a section while traversing the input file

Pass II: generates the actual code.

Two-Pass Assembler – Pass I
The main task of this pass is to scan the input file and compute the offset of
all symbols appearing in the program, in the following tables:

Section table: Detailed information regarding all sections appearing in the input
program.

1

Name Size Attributes Pointer to content

Size: the total size

Section name: the name of the section

Attributes: the section declaration may have several attributes like name, start address,
size, align, etc.

Pointer to content: at the end of Pass II, pointer will point to the content of the section
after translation.

Two-Pass Assembler – Pass I

Symbol table: holds information about the symbols defined in the program. 2

Name Type Location Size Section-id Is-global

Size: stores the size of symbol in bytes

Type: stores the type such as variable, label, etc.

Location: the offset of the symbol from the start of the section containing it.

Is-global: is a Boolean, identifying whether the symbol has been declared as global.

Name: the name of the symbol

Section -id: identifies the section to which the section belongs.

Two-Pass Assembler – Pass I

Common table: holds information about the variables declared COMMON.3

Name Size

Two-Pass Assembler – Pass I (Flowchart)

Please see the flowchart: Pass I of the two-pass assembler

Two-Pass Assembler – Pass I (Flowchart explained..)

Initialize the Global list, to store all global declarations. The lc is also initialized to zero.1

Read the next line and update one or more tables as needed, till the end-of-file
marker is reached by physical end or by some special symbol.

2

The process Read next line scans the input file and returns the line to be assembled
next skipping over the comments.

3

4 The line is then parsed into components like possible label, mnemonic, and operands.
The mnemonic can be a:

machine instruction
pseudo opcode

assembler directive.

Two-Pass Assembler – Pass I (Flowchart explained..)

If a label is present in the line:5

Put label and current lc value in Symbol table.

Type is set as label for machine instructions and variable for pseudo opcode.

Size is not requreid for label, for a variable it is set to the amount of memory required to
store the variable.

Section-id is set to the index of current section in section table.

Is-global is set to false for the time being.

Next, lc is updated by the size of the instruction for machine instructions and the amount
of memory required for pseudo opcode.

Two-Pass Assembler – Pass I (Flowchart explained..)

For the assembler directive the course of action depends upon the type of the
directive:

6

For a Section directive indicating the beginning of a new section, the size of last section in
Section table is set to the current lc value. A new entry is created in the Section table and lc
is reset to zero.

For an external symbol defined via an extern declaration, it is put into Symbol table, marking
its type as external.

For global symbols, it is put into the global list.

Similarly; the common symbols, are put into the common table and also put into the Symbol
table, marking its type as common.

Two-Pass Assembler – Pass I (Flowchart explained..)

When the end-of-file is reached: 7

Section table is updated to mark the size of the last section as lc .

Symbol table is updated to set the Is-global field to true for all entries corresponding to the
symbols in the global list.

Control then transfers to Pass II .

Two-Pass Assembler – Pass I (Example)

Please see the Program: to find the maximum in an array.

To start with, Global list is initialized and lc is set
to zero.

Line 1: global main, puts the entry main in
Global list.

Line 2: extern printf, puts the entry printf into
the Symbol table, with type set as external.

Line 3: section .data, an entry is made into the
Section table, and lc is reset to zero.

Line 4: my_array, label entry is made into the
Symbol table with:

Type as variable
Size as 40 bytes
Location as zero(current lc value)
Section-id as 1
Is-global set to false

and lc is set to 40.

Line 5: format, label entry is made into the
Symbol table with

Type as variable
Size as 3 bytes
Location as 40
Section-id as 1
Is-global set to false

and lc is set to 43.

Line 6: section .text, the current value of lc is
stored as Size of Section 1 in the Section table.

A new entry is created for section .text into the
Section table, and lc is reset to zero.

Line 7: main, the label entry is made into the
Symbol table with

Size as 5 bytes
lc is incremented to 5.

Pass I continues by computing the length of
instructions and incrementing lc accordingly.

The label L2, L1, and over are stored in Symbol
table.

Finally after processing RET instruction, the
end-of-file is reached.

The current lc value 55 is entered as Size of the
section .text.

Global list is consulted to mark the label main
as the global in the Symbol table, by setting Is-
global to true.

Two-Pass Assembler – Pass I (tables)

(a) Section table, and (b) Symbol table for the example

Two-Pass Assembler – Pass II
The main task of this pass is to generate the machine code

It uses tables created in Pass I and writes the generated code into an object
file.

Please see the flowchart: Pass II of the two-pass assembler

The object-file-offset and lc are initialized with
zero.

The source program lines are read one by
one sequentially and corresponding code is
generated.

The actual code generation will definitely
depend upon the target processor.

Two-Pass Assembler – Code generated for the Program

Please see the Code generated: for the program to find the maximum

Name Size Attributes Pointer to content

.data 43 0

.text 55 44

Two-Pass Assembler – Code generated for the Program

The updated Section table

Name Offsets to be corrected

printf 43

External reference list

Single-Pass Assembler
The single-pass assembler scans the input assembly language program only
once. Thus, it is faster than a two-pass assembler.

It uses the same set of data structures as the two-pass assembler.

However, it needs some extra data structures and processing to handle the
references to symbols defined in the later part of the program.

 :

X: db 10

 :

MOV AL, X

MOV Y, AL

 :

Y: RESB

makes entry in SYMTAB and simultaneously generates code to reserve one bye initialized
to 10.

here address of X is already available in the SYMTAB which can be use to generate code.

Address of Y is not known at this point of time. It will only be available when Y:RESB is
seen. This type of situation is known as Forward Reference.

→

→

→

Single-Pass Assembler
The single-pass assembler scans the input assembly language program only
once. Thus, it is faster than a two-pass assembler.

It uses the same set of data structures as the two-pass assembler.

However, it needs some extra data structures and processing to handle the
references to symbols defined in the later part of the program.

 :

X: db 10

 :

MOV AL, X

MOV Y, AL

 :

Y: RESB

makes entry in SYMTAB and simultaneously generates code to reserve one bye initialized
to 10.

here address of X is already available in the SYMTAB which can be use to generate code.

Address of Y is not known at this point of time. It will only be available when Y:RESB is
seen. This type of situation is known as Forward Reference.

→

→

→

Q. What about Two-Pass Assembler?

Single-Pass Assembler (1)

To resolve the problem of forward referencing, the assembler, upon seeing
a symbol not yet defined, should make an entry into the SYMTAB .

→ The value of Type field for symbol should be inferred from the context and marked as
undefined.

→ When the symbol gets defined, it should be checked with the entry already present in
the SYMTAB.

→ Any discrepancy may be resolved accordingly, or reported as an error.

There will be no problem of forward reference in a two-pass assembler.
→ Since, the Pass I finds the symbols defined in the input program, and at the end of Pass I,

information is available in the SYMTAB, which is used by Pass II to generates the code.

Single-Pass Assembler (2)
There exists another potential problem regarding the code generation

Backpatching
→ For each froward referenced symbol, a corresponding list of locations requiring

corrections is maintained. The list is called as forward reference list .

→ An instruction containing forward reference cannot be translated entirely at the time it
is encounters

→ Since, address of the operand symbol in not available at that time.

→ The Address will be known only after the definition has been seen, and at that time, all
the locations corresponding to the reference of the symbol cab be fixed.

→ The process is known as backpatching.

→ As and when a symbol gets defined, the corresponding list be traversed and the
locations corrected.

Single-Pass Assembler (Flowchart)

Please see the flowchart: single-pass assembler

→ The flow of logic combines both Pass I and Pass II of a two-pass assembler

→ Some extra processing is needed.

Single-Pass Assembler (Extra Processing)

On reaching the end-of-file marker:1

Apart from closing the object file, updating Section table, and SYMTAB, it also needs to
check whether some forward referenced symbol is still left unidentified.

At the point of referencing, the assembler assumes it to be a forward referenced symbol
and expects it to appear in he later part of the program. An entry is made into the SYMTAB
with type left as undefined.

Thus, at the end of assembly process, if some symbols are still undefined, it is an error and
should be reported to the programmer

→ Situation may occur is some symbol is referred to in the program but never defined.

Single-Pass Assembler (Extra Processing)

In the code generation process:2

While translating an instruction, its operands are looked for in the SYMTAB, and If the
operand is not found:

If he operand is already present in the SYMTAB with type undefined:

→ A new entry is made into the SYMTAB with type undefined, assuming that it is a froward reference.

→ Also, an entry is created in the forward reference list, for this label along with the location requiring
correction.

→ The label is searched for in the froward reference list, and the current location is added to the list of
locations requiring corrections for this label.

Single-Pass Assembler (Extra Processing)

Whenever a new symbol is defined in the form of a label to some instruction or
pseudo opcode:

3

 It is to be entered into the SYMTAB

At the same time, it should be checked, whether it is a forward referenced
symbol or not ?

→ If the label is a froward referenced, the backpatching procedure is invoked to correct the locations
noted in the forward reference table entry corresponding to this symbol.

Single-Pass Assembler (Program)

Please see the Program: To find the maximum of a set of numbers.

Single-Pass Assembler – Code generated for the Program

Please see the Code generated: for the program to find the maximum

Single-Pass Assembler (Tables)

Single-Pass Assembler (Tables)

Load-and-go Assembler
Assemblers producing the object code directly into the memory and the
code is ready for execution.

Suitable for small programs in their development stages:
Where after small modification, it is required to check the results.→

The development time is reduced since:
Since after every modification, the object file need not be stored into the secondary storage
and loaded again from there for execution.

→

However, it has a number of drawbacks (discussed in the next slide)

Load-and-go Assembler (Drawbacks)

The user program needs to be reassembled each time it is run.1

The memory occupied by the load-and-go assembler is unavailable for use
by the program.

2

A load-and-go assembler cannot be used to reassemble itself. 3

To avoid these problems, most of the assemblers are equipped with the
capability to write their output into a file in the secondary storage.(should be
acceptable to linker, etc.)

Object File Formats

Intel hex format1

obj – Microsoft OMF object files2

coff – Common object file format4

win32 – Microsoft Win32 object files3

elf – Executable and linkable5

aout – Linux a.out object files.6

References

Book: System Software: An Introduction to System Programming, Third Edition,
Leland L. Beck and D. Manjula, Pearson Education.

PPT: Hsung-Pin Chang, Department of Computer Science, National Chung Hsing
University, Chapter 1: Background

Book: System Software, S. Chattopadhyaya (2011), PHI Learning.

Book: Alfred V. Aho, Monica S. Lam, Ravi Sethi, J D Ullman, Compilers: Principles,
Techniques, and Tools, 2nd Edition, Prentice Hall, 2006.

PPT: Hsung-Pin Chang, Department of Computer Science, National Chung Hsing
University, Chapter 2: Assembler (for additional reading)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

