
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

BHCS15B: System Programming

Course Web Page
(www.mkbhandari.com/mkwiki)

Syntax Analysis

Outline

Role of a Syntax Analyzer (or Parser)1

2

3

4

5

Context Free Grammars

Derivation and Parse Tree (online tutorial)

Bottom-up Parsing

6

LR Parsing (Handwritten notes + online tutorial)

YACC (Handwritten notes + online tutorial)

Compilation Phases (revisited)

Lexical Analysis (Scanning)1

Compilation phases are divided into several phases:

Syntax Analysis (Parsing)2

Semantic Analysis3

Intermediate Code Generation4

Code Optimization5

Code Generation6

Compilation Phases (revisited)

Lexical Analysis (Scanning)1

Compilation phases are divided into several phases:

Syntax Analysis (Parsing)2

Semantic Analysis3

Intermediate Code Generation4

Code Optimization5

Code Generation6

Front-end pass (One Pass)

An Optional Pass

A Back-end pass (another Pass)

Role of a Parser

Role of a Parser

Parse
Tree

Types of Parsers
The methods commonly used in compilers are:

→ Can parse any grammar

→ Parse-trees built from root to leaves

Top-down2

Universal 1

→ Too inefficient to use in production compilers

→ Input to parser scanned from left to right one symbol at a time

→ Start from leaves and work their way up to the root

Bottom-up3

→ Input to parser scanned from left to right one symbol at a time

Syntax Error Handling
Common programming errors can occur at many different levels.

→ include misspellings of identifiers, keywords, or operators.

→ Include misplaced semicolons or extra or missing braces;

Syntactic errors2

Lexical Errors1

Semantic errors3

→ incompatible value assignment or type mismatches between operator and operand

Logical errors4

→ code not reachable, infinite loop.

Syntax Error Handling (2)
Identify the type of errors in the following example:

12aba

(a+(b*c)b

2 + a[i]c

for(; ;) {
printf(“Hello \n”);

}

d

Syntax Error Handling (2)
Identify the type of errors in the following example:

12ab // lexical errora

(a+(b*c) // syntactic errorb

2 + a[i] // semantic errorc

for(; ;) {
printf(“Hello \n”); // logical error

}

d

Syntax Error Handling (3)
The error handler in a parser has goals that are simple to state but
challenging to realize:

Report the presence of errors clearly and accurately.

Recover from each error quickly enough to detect subsequent errors.

Add minimal overhead to the processing of correct programs.

Error-Recovery Strategies
Common programming errors can occur at many different levels.

→ the parser discards input symbols one at a time until one of a designated set of
synchronizing tokens (delimiters like ‘ ,’ , ’ ; ’) is found.

→ Parser may perform local correction on the remaining input. For example: replace a comma
by a semicolon, delete an extraneous semicolon, or insert a missing semicolon.

Phrase level2

Panic mode:1

Error productions:3

→ we augment the error productions to construct a parser. Error diagnostics can be generated
to indicate the erroneous construct.

Global correction4

→ a minimal sequence of changes to obtain a globally least-cost correction.

Context Free Grammar
A Context Free Grammar is defined in the form of quadruple:

G = (V, T, P, S)

V is a finite set of non-terminals(syntactic variables)

T is a finite set of terminals

P is finite set of production rules in the form A α →

S is a start symbol (a non-terminal symbol)

→ A is a non-terminal symbol
→ α ∈ (V U T)* (any occurrences of non-terminals and terminals including 0

occurrence, i.e., epsilon)

Capabilities of CFG
There are the various capabilities of CFG:

Context free grammar is useful to describe most of the programming languages.

If the grammar is properly designed then an efficient parser can be constructed
automatically.

Using the features of associativity & precedence information, suitable grammars
for expressions can be constructed.

Context free grammar is capable of describing nested structures like: balanced
parentheses, matching begin-end, corresponding if-then-else's & so on.

Context Free Grammar (2)
Grammar for simple arithmetic expressions

CFG (Notational Conventions)

CFG (Notational Conventions)

CFG (Notational Conventions)

CFG (Notational Conventions)

From the given grammar, identify terminals, nonterminals, and start symbol.

CFG (Notational Conventions)

From the given grammar, identify terminals, nonterminals, and start symbol.

Nonterminals: E, T, F

Start Symbol: E

Terminals: id, *, + , -, /

Bottom-Up Parsing
The construction of a parse tree for an input string beginning at the leaves
(the bottom) and working up towards the root (the top).

Bottom-up parsing is the process of reducing input string to the starting symbol of the grammar

It generates right-most derivation in reverse order.

A general style of bottom-up parsing known as shift-reduce parsing.

LR grammars are the largest class of grammars for which shift-reduce
parsers can be built.

Bottom-Up Parsing (2)
The sequence of tree snapshots (in next slide) illustrates a bottom-up parse of
the token stream id * id, with respect to the expression grammar (G1)

E → E + T | T
T → T * F | F
F → (E) | id

E represents expressions consisting of terms separated by + signs,

T represents terms consisting of factors separated by * signs, and

F represents factors that can be either parenthesized expressions or
identifiers

Bottom-Up Parsing (3)

Reductions
We can think of Bottom-up parsing as the process of "reducing" a string w to
the start symbol of the grammar.

At each reduction step, a specific substring matching the body of a production
is replaced by the nonterminal at the head of that production.

The key decisions during bottom-up parsing are about when to reduce and
about what production to apply, as the parse proceeds.

Reduction means if the substring (or handle) matches with right hand side of the production
then it is reduced to the corresponding left hand side non-terminal.

Reductions (2)
The following illustrates a sequence of reductions (in terms of the sequence of
strings)

By definition, a reduction is the reverse of a step in a derivation

The goal of bottom-up parsing is therefore to construct a derivation in
reverse.

The following derivation corresponds to the parse in Figure 4.25

Reductions (2)
The following illustrates a sequence of reductions (in terms of the sequence of
strings)

By definition, a reduction is the reverse of a step in a derivation

The goal of bottom-up parsing is therefore to construct a derivation in
reverse.

The following derivation corresponds to the parse in Figure 4.25

(a rightmost derivation)

Handle and Handle Pruning
Bottom-up parsing during a left-to-right scan of the input constructs a right-
most derivation in reverse.

Handle is a substring which matches the body of a production, and whose reduction
represents one step along the reverse of a rightmost derivation.

E → E + T | T
T → T * F | F
F → (E) | id

The handle during parsing for input string id * id, is shown in the next slide.
Consider the following Grammar (production rules):

Handle and Handle Pruning (2)

A rightmost derivation in reverse can be obtained by "handle pruning".

Class Assignment

S → aABe
A → Abc | b
B → d

For the grammar shown below, and input string “abbcde”, indicate the
handle in right-sentential forms:

a) S S S + a * +
b) S S + a * a +
c) a a a * a + +

Q1

For the grammar S S S + | S S * | a → indicate the handle in each of the
following right-sentential forms:

Q2

Shift-Reduce Parsing
Shift-reduce parsing is a form of bottom-up parsing.

It uses a stack to hold the grammar and an input buffer to hold the string (rest
of the string to be parsed).

There are actually four possible actions a shift-reduce parser can make:
Shift1

Reduce2

Accept3

Error4

Shift-Reduce Parsing (2)

Shift - A push operaton, shifts the next input symbol onto the top of the stack.1

Reduce – If top of the stack (substring / handle) matches with the right side of the
production then it is reduced to corresponding left side nonterminal.

2

Accept - Announce successful completion of parsing (input string belongs to the language of
the grammar)

3

Error - Discover a syntax error and call an error recovery routine.4

Shift-Reduce Parsing (3)

At the shift action, the current symbol in the input string is pushed to a stack.

The parser repeats this cycle until it has detected an error or until the stack
contains the start symbol and the input is empty:

We use $ to mark the bottom of the stack and also the right end of the input.

At each reduction, the symbols will replaced by the non-terminals. The
symbol is the right side of the production and non-terminal is the left side of
the production.

Shift-Reduce Parsing (4)

E → E + T | T
T → T * F | F
F → (E) | id

Grammar

Conflicts During Shift-Reduce Parsing

A shift/reduce conflict – occurs if the parser has a choice to select both shift action and reduce
action simultaneously.

1

Two types of conflicts arises in shift-reduce parsing:

E → E + T | T
T → T * F | F
F → (E) | id

Grammar

Conflicts During Shift-Reduce Parsing

A reduce/reduce conflict – occurs if more than one reduction is possible for the corresponding
handles.

2

Two types of conflicts arises in shift-reduce parsing:

E → E + T | T
T → T * F | F
F → (E) | id

Grammar

Class Assignment

 S → (L) | a
 L → L,S | S

Grammar (Q1)

Generate the shift-reduce parser for the input string “(a , (a , a))”, with the
help of following grammar.

Q1

Generate the shift-reduce parser for the input string “a1 - (a2 + a3)”, with the
help of following grammar.

Q2

 S → S + S
 S → S – S
 S → (S)
 S → a

Grammar (Q2)

LR Parsing

Handwritten notes and online tutorial

LR Parsing

LR Parsing

References

R Reference for this topic

Book: Alfred V. Aho, Monica S. Lam, Ravi Sethi, J D Ullman, Compilers: Principles,
Techniques, and Tools, 2nd Edition, Prentice Hall, 2006.

Web: CS143 Compilers, Lecture 4, Stanford University.
https://cs.nyu.edu/courses/Fall12/CSCI-GA.2130-001/lecture4.pdf

Web: Theory of Computation by Ms. Vandita Grover, Assistant Professor, ANDC,
University of Delhi
https://sites.google.com/view/courses-vanditagrover/home/ToC-Resources

Web: Java T Point, Compiler Tutorial
https://www.javatpoint.com/derivation
https://www.javatpoint.com/parse-tree

https://www.javatpoint.com/derivation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

