BHCS15B: System Programming

Lexical Analysis

Mahesh Kumar (maheshkumar@andc.du.ac.in)

Course Web Page (www.mkbhandari.com/mkwiki)

Outline

- 1 Role of a Lexical Analyzer
- 2 Specification of Tokens
- 3 Recognition of Tokens
- 4 Symbol Table
- 5 Lexical Analyzer Generator Lex (covered in the course wiki)

Role of a Lexical Analyzer

- As the first phase of a compiler, the main task of the scanner is to:
 - Read the input characters of the source program,
 - Group them into lexemes,
 - *Produce* as output a sequence of *token* for each lexeme in the source program.
- The stream of tokens is sent to the parser for syntax analysis.
- Scanner also interacts with the symbol table for:
 - Storing lexeme(identifiers)
 - Reading information regarding the kind of identifier, to assist it in determining the proper token it must pass to the parser.

Role of a Lexical Analyzer (2)

Figure 3.1: Interactions between the lexical analyzer and the parser [1]

Role of a Lexical Analyzer (3)

- Other important tasks performed by lexical analyzer (besides identifications of lexemes):
 - Stripping out comments and whitespace (blank, newline, tab, etc.)
 - Correlating error messages generated by the compiler with the source program.
 - → Keep track of no. of newline characters seen, so that it can associate a line no. with each error message.
 - → In some compilers, it makes a copy of the source program, with error messages inserted at the appropriate positions.
 - Expansion of macros may also be performed by the lexical analyzer.
 - → if macro-preprocessors are used in the source program.

Role of a Lexical Analyzer (4)

- Sometimes, lexical analyzer are divided into a cascade of two processes:
 - Scanning consists of the simple processes that do not require tokenization.
 - → Deletion of comments.
 - → Compaction of consecutive whitespace characters into one.

- **D** Lexical Analysis proper is the more complex portion.
 - → Where the scanner produces the sequence of tokens as output.

Lexical Analysis vs. Parsing

- Number of reasons why analysis portion of a compiler is normally separated into lexical analysis(scanner) and syntax analysis(parser) phases:
 - Simplicity of design (separating concerns results in a cleaner overall design)
 - → Lexical analysis will remove unwanted things, such as comments, whitespaces, etc.
 - → Parser will focus on snytactic concerns.
 - Compiler efficiency is improved
 - → Specialized techniques can be applied to each phase.
 - → Specialized buffering techniques for reading input characters can speed up the compiler.
 - © Compiler portability is enhanced
 - → Input-device-specific peculiarities can be restricted to the lexical analysis.

Tokens, Patterns, and Lexemes

- All three are related but distinct terms:
 - Token (a pair consisting of a token name and optional attribute value)
 - → Token name is an abstract symbol, representing a kind of lexical unit. For example: a keyword, or an identifier.
 - → Token names are the input symbols that the parser processes.
 - → Tokens are often referred by its token name, and we shall generally write the name of token in bold face.
 - **b** Pattern (a description of the form that the lexemes of a token may take)
 - → For a keyword as a token, the pattern is just the sequence of characters that form the keyword.
 - → For identifiers and some other tokens, the pattern is a more complex structure that is matched by many strings.

Tokens, Patterns, and Lexemes (2)

- © Lexeme (the piece of the original program from which token is made)
 - → A sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.

TOKEN	INFORMAL DESCRIPTION	SAMPLE LEXEMES
if	characters i, f	if
${f else}$	characters e, 1, s, e	else
comparison	<pre>< or > or <= or >= or !=</pre>	<=, !=
id	letter followed by letters and digits	pi, score, D2
${f number}$	any numeric constant 3.14159, 0, 6.02e23	
literal	anything but ", surrounded by "'s	"core dumped"

Figure 3.2: Examples of tokens

Tokens, Patterns, and Lexemes (3)

- In many programming languages, the following classes cover most or all of the tokens.
 - ① One token for each *keyword*. The pattern for a keyword is the same as the keyword itself.
 - 2 Tokens for the *operators*, either individually or in classes such as the token comparison.
 - One token representing all identifiers.
 - 4 One or more tokens representing *constants*, such as numbers and literal strings.
 - **5** Tokens for each *punctuation symbol*, such as left and right parentheses, comma, and semicolon.

Attributes for Tokens

- When more than one lexeme can match a pattern, the lexical analyzer must provide the additional information about the lexeme that matched, to the subsequent phase.
 - For example: the pattern for token number matches both 0 and 1, but it is extremely important for the code generator to know which lexeme was found in the source program
 - → The lexical analyzer returns to the parser not only a token name, but an attribute value that describes the lexeme represented by the token.
 - → The token name influences parsing decisions, while the attribute value influences translation of tokens after the parse.
- We assume that tokens have at most one associated attribute, although this attribute may have a structure that combines several pieces of information.

Attributes for Tokens (2)

 The most important example is the token id, where we need to associate with the token a great deal of information

 Normally, information about an identifier – eg., its lexeme, its type, and the location at which it is first found is kept in the symbol table.

Thus, the appropriate attribute value for an identifier is a pointer to the symbol-table entry for that identifier.

Attributes for Tokens (3)

Example 3.2: The token names and associated attribute values for the Fortran statement

$$E = M * C ** 2$$

are written below as a sequence of pairs.

```
<id, pointer to symbol-table entry for E>
<assign_op>
<id, pointer to symbol-table entry for M>
<mult_op>
<id, pointer to symbol-table entry for C>
<exp_op>
<number, integer value 2>
```

Lexical Errors

- Without the aid of other components, it is hard for a lexical analyzer to tell that there is a source-code error.
- For example:

$$fi(a == f(x))...$$

- → a lexical analyzer cannot tell whether **f i** is a misspelling of the keyword **i f** or an undeclared function identifier.
- → Since **f i** is a valid lexeme for the token **id**, the lexical analyzer must return the token **i d** to the parser and let some other phase of the compiler(probably the parser) handle an error due to transposition of the letters.

Lexical Errors (2)

- Some of the possible error-recovery actions, when lexical analyzer is unable to proceed because none of the patterns for tokens matches any prefix of the remaining input:
 - Delete one character from the remaining input.
 - Insert a missing character into the remaining input.
 - 3 Replace a character by another character.
 - Transpose two adjacent characters.
 - **5** The simplest recovery strategy is "panic mode" recovery.
 - → delete successive characters from the remaining input, until the lexical analyzer can find a well-formed token at the beginning of what input is left.
- Transformations like these may be tried in an attempt to repair the input.

Specification of Tokens

- Regular expression are an important notation for specifying lexeme patterns. (A formal way to specify patterns)
- Following concepts will be covered in this section:
 - Strings and Languages
 - Operations on Languages
 - 3 Regular Expressions
 - Regular Definitions
 - 5 Extensions of Regular Expressions.

Alphabets

- An *alphabet* is any finite set of symbols (letters, digits, punctuation)
 - In English an Alphabet is a finite set of 26 letters {A,B,C...,Z}.
 - In Hindi an Alphabet is a finite set of 52 letters {अ, आ, इ,...,क्ष त्र ज्ञ}.
 - An alphabet is denoted by Σ (*Greek letter sigma*).
 - For example:
 - \rightarrow $\Sigma = \{0,1\}$ is a binary alphabet over symbols 0, 1
 - \rightarrow $\Sigma = \{a,b,c\}$ is an alphabet over symbols a,b,c
 - ASCII is an important example of an alphabet, used in many software systems.
 - Unicode is another important example of an alphabet, contains characters from most written languages all over the world.

Strings

- A string over an alphabet is a finite sequence of symbols chosen from that alphabet. (formed by concatenating a finite number of symbols in the alphabet)
 - For example:
 - \rightarrow If $\Sigma = \{a,b,c\}$: abc, abaa, baba, cbbbaaabb, ccccc, cbcab, ... etc. are strings.
 - → If $\Sigma = \{0,1\}$ some of the strings could be 0, 1, 00, 11, 0101011, 000111, ...
- Length of a string s, usually written | s |, is the number of occurrences of symbols in s. For example:
 - → **ANDC** is a string of length four.
- *Null or Empty* string, denoted by (\mathbf{e} or $\boldsymbol{\Lambda}$ or $\boldsymbol{\epsilon}$), is the string of length zero.
- In language theory, the terms "sentence" and "word" are often used as synonyms for "string".

Strings (2)

- Concatenation of strings: If x and y are strings, then the concatenation of x and y, denoted xy, is the string formed by appending y to x.
 - For example:
 - \rightarrow if $\mathbf{x} = Delhi$ and $\mathbf{y} = University$, then $\mathbf{xy} = DelhiUniversity$.
 - The empty string is the identity under concatenation;
 - \rightarrow for any string **s**, **\varepsilon s** = **s** = **s**
 - Concatenation as a product, we can define the "exponentiation" of strings as follows:
 - \rightarrow Define S^0 to be E, and and for all i > 0, define S^i to be $S^{i-1}S$.
 - \rightarrow Since **ES** = **S**, it follows that $S^1 = S$. Then $S^2 = SS$, $S^3 = SSS$, and so on

Terms for Parts of Strings

- The following string related terms are commonly used:
 - 1 Prefix of string **s** is any string obtained by <u>removing zero or more symbols from the</u> <u>end</u> of **s**. For example: **ban, banana**, and **e** are prefixes of **banana**.
 - 2 Suffix of string **s** is any string obtained by <u>removing zero or more symbols from the</u> <u>beginning</u> of **s**. For example: **nana**, **banana**, and **e** are suffixes of **banana**.
 - 3 Substring of **s** is obtained by <u>deleting any prefix and any suffix</u> from **s**. For example: **banana, nan,** and **e** are substrings of banana.
 - 4 A proper prefixes, suffixes, and substrings of a string **s** are those, prefixes, suffixes, and substrings, respectively, of **s** that are not **e** or not equal to **s** itself.
 - **5** Subsequence of **s** is any string formed by <u>deleting zero or more not necessarily</u> consecutive positions of s. For example: **baan** is subsequence of **banana**.

Language

- A language is set of strings over an alphabet.
 - For example:
 - → If $\Sigma = \{a,b\}$: then $\{a, ab, baa\}$ is a language over alphabet $\{a,b\}$.
 - → If Σ = {0,1}: then {0, 111} is a language over alphabet{0,1}.
- Empty language (φ):
 - Just like Empty set is the language that has no words.
 - \mathbf{E} or $\mathbf{\Lambda}$ is not a string in the language $\mathbf{\Phi}$ since this language has no words at all.

• Abstract languages like ϕ , the **empty set**, or { \mathbf{E} } is the set containing only the empty string.

Operations on Languages

■ In *lexical analysis*, the most important operations on languages are union, concatenation, and closure, as shown:

OPERATION :	DEFINITION AND NOTATION
$Union ext{ of } L ext{ and } M$	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$
$Concatenation ext{ of } L ext{ and } M$	$LM = \{ st \mid s \text{ is in } L \text{ and } t \text{ is in } M \}$
$Kleene\ closure\ { m of}\ L$	$L^* = \cup_{i=0}^{\infty} L^i$
$Positive \ closure \ { m of} \ L$	$L^+ = \cup_{i=1}^{\infty} L^i$

Figure 3.6: Definitions of operations on languages

Operations on Languages (2)

- In general, we can summarize Powers of ∑
 - \sum^{k} = the set of all strings of length k
 - $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$
 - $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup ...$

Operations on Languages (3)

Example 3.3:

Let L be the set of letters $\{A, B, \ldots, Z, a, b, \ldots, z\}$ and

Let D be the set of digits $\{0,1,\ldots 9\}$.

We may think of L and D in two, essentially equivalent, ways.

One way is that L and D are, respectively, the alphabets of uppercase and lowercase letters and of digits.

The *second way* is that L and D are languages, all of whose strings happen to be of length one.

Some other languages that can be constructed from languages L and D, using the operators are shown in the next slide:

Operations on Languages (4)

- 1. $L \cup D$ is the set of letters and digits strictly speaking the language with 62 strings of length one, each of which strings is either one letter or one digit.
- 2. LD is the set of 520 strings of length two, each consisting of one letter followed by one digit.
- 3. L^4 is the set of all 4-letter strings.
- 4. L^* is the set of all strings of letters, including ϵ , the empty string.
- 5. $L(L \cup D)^*$ is the set of all strings of letters and digits beginning with a letter.
- 6. D^+ is the set of all strings of one or more digits.

Regular Expressions

- A *regular expression* is useful for describing all the languages that can be built from the operations applied to the symbols of some alphabet.
- Here are the *rules* that define the regular expressions over some alphabet ∑ and the languages that those expressions denote.
- BASIS: There are two rules that form the basis:
 - ① $\boldsymbol{\mathcal{E}}$ is a regular expression, and $\boldsymbol{L}(\boldsymbol{\mathcal{E}})$ is $\boldsymbol{\mathcal{E}}$, that is, the language whose sole member is the empty string. \boldsymbol{or} ($\boldsymbol{\mathcal{E}}$ is a regular expression for null string $\boldsymbol{\mathcal{E}}$)
 - 2 If \mathbf{a} is a symbol in $\mathbf{\Sigma}$, then \mathbf{a} is a regular expression, and $\mathbf{L}(\mathbf{a}) = \{\mathbf{a}\}$, that is, the language with one string, of length one, with a in its one position. or (if \mathbf{a} is symbol in $\mathbf{\Sigma}$ then \mathbf{a} is regular expression for $\{\mathbf{a}\}$)

Regular Expressions (2)

- INDUCTION: There are four parts to the induction whereby larger regular expressions are built from smaller ones. Suppose r and s are regular expressions denoting languages L(r) and L(s), respectively:
 - (r) | (s) is a regular expression denoting the language L(r) U L(s).
 - (r)(s) is a regular expression denoting the language L(r)L(s).
 - (r)* is a regular expression denoting (L(r))*.
 - **4 (r)** is a regular expression denoting **L(r)**.

Regular Expressions (3)

- Regular expressions often contain unnecessary pairs of parentheses. We may drop certain pairs of parentheses if we adopt the conventions that:
 - The unary operator * has highest precedence and is left associative.
- Concatenation has second highest precedence and is left associative.
 - | has lowest precedence and is left associative.
- Under these conventions, for example, we may replace the regular expression (a) | ((b)*(c)) by a | b*c.
 - → Both expressions denote the set of strings that are either a single a or are zero or more b's followed by one c.

Regular Expressions (4)

Example 3.4: Let $\Sigma = \{a, b\}$.

- 1. The regular expression $\mathbf{a}|\mathbf{b}$ denotes the language $\{a,b\}$.
- 2. $(\mathbf{a}|\mathbf{b})(\mathbf{a}|\mathbf{b})$ denotes $\{aa, ab, ba, bb\}$, the language of all strings of length two over the alphabet Σ . Another regular expression for the same language is $\mathbf{aa}|\mathbf{ab}|\mathbf{ba}|\mathbf{bb}$.
- 3. \mathbf{a}^* denotes the language consisting of all strings of zero or more a's, that is, $\{\epsilon, a, aa, aaa, \dots\}$.
- 4. $(\mathbf{a}|\mathbf{b})^*$ denotes the set of all strings consisting of zero or more instances of a or b, that is, all strings of a's and b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, \dots\}$. Another regular expression for the same language is $(\mathbf{a}^*\mathbf{b}^*)^*$.
- 5. $\mathbf{a}|\mathbf{a}^*\mathbf{b}$ denotes the language $\{a, b, ab, aab, aaab, \dots\}$, that is, the string a and all strings consisting of zero or more a's and ending in b.

Regular Expressions – Algebraic Law

- A language that can be defined by a regular expression is called a regular set.
- If two regular expressions \mathbf{r} and \mathbf{s} denote the same regular set, we say they are equivalent and write $\mathbf{r} = \mathbf{s}$. For instance, $(\mathbf{a} \mid \mathbf{b}) = (\mathbf{b} \mid \mathbf{a})$.

LAW	DESCRIPTION	
r s=s r	is commutative	
r (s t) = (r s) t	is associative	
r(st) = (rs)t	Concatenation is associative	
r(s t) = rs rt; (s t)r = sr tr	Concatenation distributes over	
$\epsilon r = r\epsilon = r$	ϵ is the identity for concatenation	
$r^* = (r \epsilon)^*$	ϵ is guaranteed in a closure	
$r^{**} = r^*$	* is idempotent	

Figure 3.7: Algebraic laws for regular expressions

Regular Definitions

- It is a name given to the regular expressions, and you can use those names in the subsequent expressions, as if the names were themselves symbols.
- If Σ is an alphabet of basic symbols, then a regular definition is a sequence of definitions of the form:

$$egin{array}{cccc} d_1 &
ightarrow & r_1 \ d_2 &
ightarrow & r_2 \ & \cdots & & & \ d_n &
ightarrow & r_n \end{array}$$

• where:

- \rightarrow Each **d**_i is a new symbol, not in Σ and not the same as any other of the **d's**, and
- \rightarrow Each \mathbf{r}_i is a regular expression over the alphabet $\Sigma \cup \{\mathbf{d}_1, \mathbf{d}_2, \ldots, \mathbf{d}_{i-1}\}$.

Regular Definitions (2)

Example 3.5: C identifiers are strings of letters, digits, and underscores. Here is a regular definition for the language of C identifiers. We shall conventionally use italics for the symbols defined in regular definitions.

Regular Definitions (3)

Example 3.6: Unsigned numbers (integer or floating point) are strings such as 5280, 0.01234, 6.336E4, or 1.89E-4. The regular definition

Extensions of Regular Expressions

- 1 One or more instances (+)
 - The unary, postfix operator + represents the positive closure of a regular expression and its language.
 - If r is a regular expression, then (r)⁺ denotes the language (L(r))⁺.
 - The operator + has the same precedence and associativity as the operator *.
 - Two useful algebraic laws as shown below, relate the Kleene closure and positive closure:
 - a $r^* = r^+ | \epsilon$
 - $r^{+} = rr^{*} = r^{*}r$

Extensions of Regular Expressions (2)

2 Zero or one instance (?)

The unary, postfix operator? means "zero or one occurrence."

That is, r? is equivalent to r | ε, or put another way, L(r?) = L(r) U {ε}.

The operator? has the same precedence and associativity as the operator + and *.

Extensions of Regular Expressions (3)

- 3 Character Classes (shorthand)
 - A regular expression $\mathbf{a_1}|\mathbf{a_2}|\dots|\mathbf{a_n}$, where the $\mathbf{a_i}$'s are each symbols of the alphabet, can be replaced by the shorthand $[\mathbf{a_1}\mathbf{a_2}\dots\mathbf{a_n}]$.

• More importantly, when $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$, form a logical sequence, e.g., consecutive uppercase letters, lowercase letters, or digits, we can replace them by $\mathbf{a_1}$ - $\mathbf{a_n}$, that is, just the first and last separated by a hyphen.

• Thus, [abc] is shorthand for a|b|c, and [a-z] is shorthand for a|b|...|z.

Extensions of Regular Expressions (4)

Example 3.7: Using these shorthands, we can rewrite the regular definition of Example 3.5 as:

$$\begin{array}{ccc} letter_{-} & \rightarrow & [\texttt{A-Za-z_}] \\ digit & \rightarrow & [\texttt{0-9}] \\ id & \rightarrow & letter_{-} \ (\ letter \mid \ digit \)^{*} \end{array}$$

The regular definition of Example 3.6 can also be simplified:

```
\begin{array}{cccc} \textit{digit} & \rightarrow & \texttt{[0-9]} \\ \textit{digits} & \rightarrow & \textit{digit}^+ \\ \textit{number} & \rightarrow & \textit{digits} \; (. \; \textit{digits})? \; (\; \texttt{E} \; \texttt{[+-]}? \; \textit{digits} \; )? \end{array}
```

Recognition of Tokens

Tokens are recognized with transition diagram.

(A grammar for branching statements)

(Patterns for tokens)

 $relop \rightarrow \langle | \rangle | \langle = | \rangle = | \langle \rangle$

 $ws \rightarrow ($ blank | tab | newline $)^+$

Recognition of Tokens (2)

LEXEMES	TOKEN NAME	ATTRIBUTE VALUE
$\overline{\text{Any } ws}$		_
if	if	
then	then	
else	${f else}$	
$\mathrm{Any}\ id$	id	Pointer to table entry
${\rm Any}\ number$	\mathbf{number}	Pointer to table entry
<	${f relop}$	LT
<=	${f relop}$	ĹE
=	${f relop}$	EQ
<>	${f relop}$	NE
>	${f relop}$	GŤ
>=	relop	GE

Tokens, their patterns, and attribute values

Transition Diagrams

- Intermediate step in constructing lexical analyzer, we first convert patterns
 into flowcharts called *transition diagrams*. (the conversion from regular expression patterns to transition diagrams)
- Transition diagrams have:
 - States: collection of nodes or circles
 - → Each state represents a condition that could occur during the process of scanning the input looking for a lexeme that matches one of several patterns.

- Edges: directed from one state to another.
 - → Each edge is labeled by a symbol or set of symbols.

Transition Diagrams (2)

- Some important conventions about transition diagrams are:
- Start state or initial state
 - → indicated by an edge, labeled "start", entering from nowhere.
 - → The transition diagram always begins in the start state before any input symbols have been read.
 - 2 Accepting or final states:
 - → indicates that a lexeme has been found, represented using a double circle.
 - → if there is an action to be taken, typically returning a token and an attribute value to the parser, we shall attach that action to the accepting state.
 - In addition, if it is necessary to retract the forward pointer one position (i.e., the lexeme does not include the symbol that got us to the accepting state), then we shall additionally place a * near that accepting state.

Transition Diagrams (3)

Transition Diagram for relop

Figure 3.13: Transition diagram for **relop**

Transition Diagrams (3)

Figure 3.13: Transition diagram for **relop**

Transition Diagrams (3)

Figure 3.13: Transition diagram for **relop**

Transition Diagrams (4)

Transition Diagram for id's and keywords

Figure 3.14: A transition diagram for id's and keywords

Transition Diagrams (5)

Transition Diagram for number

Figure 3.16: A transition diagram for unsigned numbers

Transition Diagrams (6)

Transition Diagram for whitespaces

Figure 3.17: A transition diagram for whitespace

Implementation of Transition Diagrams

```
TOKEN getRelop()
    TOKEN retToken = new(RELOP);
    while(1) { /* repeat character processing until a return
                  or failure occurs */
        switch(state) {
            case 0: c = nextChar();
                    if ( c == '<' ) state = 1;
                    else if ( c == '=' ) state = 5;
                    else if ( c == '>' ) state = 6;
                    else fail(); /* lexeme is not a relop */
                    break;
            case 1: ...
            case 8: retract();
                    retToken.attribute = GT;
                    return(retToken);
```


References

Reference for this topic

• **Book:** Alfred V. Aho, Monica S. Lam, Ravi Sethi, J D Ullman, *Compilers: Principles, Techniques, and Tools*, 2nd Edition, Prentice Hall, 2006.

Web: CS143 Compilers, Lecture 4, Stanford University.
 [https://cs.nyu.edu/courses/Fall12/CSCI-GA.2130-001/lecture4.pdf]

 Web: Theory of Computation by Ms. Vandita Grover, Assistant Professor, ANDC, University of Delhi

[https://sites.google.com/view/courses-vanditagrover/home/ToC-Resources]