
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

BHCS15B: System Programming

Course Web Page
(www.mkbhandari.com/mkwiki)

Lexical Analysis

Outline

Role of a Lexical Analyzer1

Specification of Tokens2

Recognition of Tokens3

Symbol Table4

Lexical Analyzer Generator – Lex (covered in the course wiki)5

Role of a Lexical Analyzer
As the first phase of a compiler, the main task of the scanner is to:

The stream of tokens is sent to the parser for syntax analysis.

Read the input characters of the source program,

Group them into lexemes,

Produce as output a sequence of token for each lexeme in the source program.

Scanner also interacts with the symbol table for:
Storing lexeme(identifiers)

Reading information regarding the kind of identifier, to assist it in determining
the proper token it must pass to the parser.

Role of a Lexical Analyzer (2)

[1]

Role of a Lexical Analyzer (3)
Other important tasks performed by lexical analyzer (besides identifications
of lexemes) :

Stripping out comments and whitespace (blank, newline, tab, etc.)

Correlating error messages generated by the compiler with the source program.
→ Keep track of no. of newline characters seen, so that it can associate a line no. with each

error message.

→ if macro-preprocessors are used in the source program.

→ In some compilers, it makes a copy of the source program, with error messages inserted
at the appropriate positions.

Expansion of macros may also be performed by the lexical analyzer.

Role of a Lexical Analyzer (4)
Sometimes, lexical analyzer are divided into a cascade of two processes:

Scanning consists of the simple processes that do not require tokenization.

→ Deletion of comments.

→ Where the scanner produces the sequence of tokens as output.

→ Compaction of consecutive whitespace characters into one.

Lexical Analysis proper is the more complex portion.

a

b

Lexical Analysis vs. Parsing
Number of reasons why analysis portion of a compiler is normally separated
into lexical analysis(scanner) and syntax analysis(parser) phases:

→ Lexical analysis will remove unwanted things, such as comments, whitespaces, etc.

→ Specialized techniques can be applied to each phase.

Compiler efficiency is improvedb

Simplicity of design (separating concerns results in a cleaner overall design)a

→ Input-device-specific peculiarities can be restricted to the lexical analysis.

Compiler portability is enhancedc

→ Parser will focus on snytactic concerns.

→ Specialized buffering techniques for reading input characters can speed up the compiler.

Tokens, Patterns, and Lexemes
All three are related but distinct terms:

→ Token names are the input symbols that the parser processes.

Token (a pair consisting of a token name and optional attribute value)a

→ For a keyword as a token, the pattern is just the sequence of characters that form the
keyword.

Pattern (a description of the form that the lexemes of a token may take)b

→ Token name is an abstract symbol, representing a kind of lexical unit. For example: a
keyword, or an identifier.

→ For identifiers and some other tokens, the pattern is a more complex structure that is
matched by many strings.

→ Tokens are often referred by its token name, and we shall generally write the name of token
in bold face.

Tokens, Patterns, and Lexemes (2)
Lexeme (the piece of the original program from which token is made) C

→ A sequence of characters in the source program that matches the pattern for a token and is
identified by the lexical analyzer as an instance of that token.

Tokens, Patterns, and Lexemes (3)

One token for each keyword. The pattern for a keyword is the same as the
keyword itself.

1

In many programming languages, the following classes cover most or all of
the tokens.

Tokens for the operators, either individually or in classes such as the token
comparison.

2

One token representing all identifiers.3

One or more tokens representing constants, such as numbers and literal strings.4

Tokens for each punctuation symbol, such as left and right parentheses, comma,
and semicolon.

5

Attributes for Tokens
When more than one lexeme can match a pattern, the lexical analyzer must
provide the additional information about the lexeme that matched, to the
subsequent phase.

For example: the pattern for token number matches both 0 and 1, but it is
extremely important for the code generator to know which lexeme was found in
the source program

→ The lexical analyzer returns to the parser not only a token name, but an attribute value
that describes the lexeme represented by the token.

→ The token name influences parsing decisions, while the attribute value influences
translation of tokens after the parse.

We assume that tokens have at most one associated attribute, although this
attribute may have a structure that combines several pieces of information.

Attributes for Tokens (2)
The most important example is the token id, where we need to associate
with the token a great deal of information

Thus, the appropriate attribute value for an identifier is a pointer to the
symbol-table entry for that identifier.

Normally, information about an identifier – eg., its lexeme, its type, and the
location at which it is first found is kept in the symbol table.

Attributes for Tokens (3)

Lexical Errors
Without the aid of other components, it is hard for a lexical analyzer to tell
that there is a source-code error.

For example:

fi (a == f (x)) …

→ a lexical analyzer cannot tell whether f i is a misspelling of the keyword i f or an
undeclared function identifier.

→ Since f i is a valid lexeme for the token id, the lexical analyzer must return the token i d to
the parser and let some other phase of the compiler(probably the parser) handle an error
due to transposition of the letters.

Lexical Errors (2)
Some of the possible error-recovery actions, when lexical analyzer is unable
to proceed because none of the patterns for tokens matches any prefix of
the remaining input:

Delete one character from the remaining input.1

Insert a missing character into the remaining input.2

Replace a character by another character.3

Transpose two adjacent characters.4

The simplest recovery strategy is "panic mode" recovery. 5

delete successive characters from the remaining input, until the lexical analyzer can find a
well-formed token at the beginning of what input is left.

→

Transformations like these may be tried in an attempt to repair the input.

Specification of Tokens
Regular expression are an important notation for specifying lexeme
patterns. (A formal way to specify patterns)

Strings and Languages1

Operations on Languages2

Regular Expressions3

Regular Definitions4

Extensions of Regular Expressions.5

Following concepts will be covered in this section:

Alphabets
An alphabet is any finite set of symbols (letters, digits, punctuation)

In English an Alphabet is a finite set of 26 letters {A,B,C...,Z}.

In Hindi an Alphabet is a finite set of 52 letters {अ, आ, इ,..., क्ष त्र ज्ञ}.

An alphabet is denoted by Σ (Greek letter sigma).

ASCII is an important example of an alphabet, used in many software systems.

Unicode is another important example of an alphabet, contains characters from
most written languages all over the world.

For example:
→ Σ = {0,1} is a binary alphabet over symbols 0, 1
→ Σ = {a,b,c} is an alphabet over symbols a, b, c

Strings
A string over an alphabet is a finite sequence of symbols chosen from that
alphabet. (formed by concatenating a finite number of symbols in the alphabet)

For example:
→ If Σ = {a,b,c} : abc, abaa, baba, cbbbaaabb, cccccc, cbcab, ... etc. are strings.

→ If Σ = {0,1} some of the strings could be 0, 1, 00, 11, 0101011, 000111, ...

Length of a string s, usually written | s |, is the number of occurrences of
symbols in s. For example:

→ ANDC is a string of length four.

Null or Empty string, denoted by (e or Λ or ɛ), is the string of length zero.

In language theory, the terms "sentence" and "word" are often used as
synonyms for "string".

Strings (2)
Concatenation of strings: If x and y are strings, then the concatenation of x
and y, denoted xy, is the string formed by appending y to x.

For example:
→ if x = Delhi and y = University, then xy = DelhiUniversity.

The empty string is the identity under concatenation;
→ for any string s, sɛ = sɛ = s

Concatenation as a product, we can define the “exponentiation” of strings as
follows:

→ Define s0 to be ɛ, and and for all i > 0, define si to be si-1 s.

→ Since s = sɛ , it follows that s1 = s. Then s2 = ss, s3 = sss, and so on

Terms for Parts of Strings
The following string related terms are commonly used:

Prefix of string s is any string obtained by removing zero or more symbols from the
end of s. For example: ban, banana, and e are prefixes of banana.

1

Suffix of string s is any string obtained by removing zero or more symbols from the
beginning of s. For example: nana, banana, and e are suffixes of banana.

2

Substring of s is obtained by deleting any prefix and any suffix from s. For example:
banana, nan, and e are substrings of banana.

3

A proper prefixes, suffixes, and substrings of a string s are those, prefixes, suffixes,
and substrings, respectively, of s that are not e or not equal to s itself.

Subsequence of s is any string formed by deleting zero or more not necessarily
consecutive positions of s. For example: baan is subsequence of banana.

5

4

A language is set of strings over an alphabet.

Language

For example:
→ If Σ = {a,b}: then {a, ab, baa} is a language over alphabet{a,b}.

→ If Σ = {0,1}: then {0, 111} is a language over alphabet{0,1}.

Empty language (ɸ):
Just like Empty set is the language that has no words.

 Ɛ or Λ is not a string in the language ɸ since this language has no words at all.

Abstract languages like ɸ , the empty set, or { Ɛ } is the set containing only
the empty string.

In lexical analysis, the most important operations on languages are union,
concatenation, and closure, as shown:

Operations on Languages

In general, we can summarize Powers of ∑

Operations on Languages (2)

∑+ = ∑1 U ∑2 U ∑3 U …

∑* = ∑0 U ∑1 U ∑2 U …

∑k = the set of all strings of length k

Operations on Languages (3)
Example 3.3:

Let L be the set of letters {A, B, . . . , Z, a, b, . . . , z } and

Let D be the set of digits {0,1,. . .9}.

We may think of L and D in two, essentially equivalent, ways.

One way is that L and D are, respectively, the alphabets of uppercase and lowercase
letters and of digits.

The second way is that L and D are languages, all of whose strings happen to be of
length one.

Some other languages that can be constructed from languages L and D, using the
operators are shown in the next slide:

Operations on Languages (4)

Regular Expressions
A regular expression is useful for describing all the languages that can be built
from the operations applied to the symbols of some alphabet.

Here are the rules that define the regular expressions over some alphabet ∑
and the languages that those expressions denote.

BASIS: There are two rules that form the basis:

 Ɛ is a regular expression, and L()Ɛ is {)Ɛ , that is, the language whose sole member is
the empty string. or (Ɛ is a regular expression for null string {Ɛ})

1

If a is a symbol in Σ , then a is a regular expression, and L(a) = {a}, that is, the
language with one string, of length one, with a in its one position. or (if a is symbol in
Σ then a is regular expression for {a})

2

Regular Expressions (2)
INDUCTION: There are four parts to the induction whereby larger regular
expressions are built from smaller ones. Suppose r and s are regular
expressions denoting languages L(r) and L(s), respectively:

(r)|(s) is a regular expression denoting the language L(r) U L(s).1

(r)(s) is a regular expression denoting the language L(r)L(s) .2

(r)* is a regular expression denoting (L(r))*.3

(r) is a regular expression denoting L(r).4

Regular Expressions (3)
Regular expressions often contain unnecessary pairs of parentheses. We may
drop certain pairs of parentheses if we adopt the conventions that:

The unary operator * has highest precedence and is left associative.a

Concatenation has second highest precedence and is left associative.b

| has lowest precedence and is left associative.c

Under these conventions, for example, we may replace the regular
expression (a)|((b)*(c)) by a|b*c.

→ Both expressions denote the set of strings that are either a single a or are zero or more b's
followed by one c.

Regular Expressions (4)

Regular Expressions – Algebraic Law
A language that can be defined by a regular expression is called a regular set.

If two regular expressions r and s denote the same regular set, we say they
are equivalent and write r = s. For instance, (a|b) = (b|a).

Regular Definitions
It is a name given to the regular expressions, and you can use those names
in the subsequent expressions, as if the names were themselves symbols.

If Σ is an alphabet of basic symbols, then a regular definition is a sequence of
definitions of the form:

where:
→ Each di is a new symbol, not in Σ and not the same as any other of the d's, and

→ Each ri is a regular expression over the alphabet Σ U {d1, d2 , . . . , di-1}.

Regular Definitions (2)

Regular Definitions (3)

Extensions of Regular Expressions
One or more instances (+) 1

If r is a regular expression, then (r)+ denotes the language (L(r))+ .

The operator + has the same precedence and associativity as the operator *.

Two useful algebraic laws as shown below, relate the Kleene closure and
positive closure:

r* = r+|Ɛa

r+= rr* = r*rb

The unary, postfix operator + represents the positive closure of a regular
expression and its language.

Extensions of Regular Expressions (2)
Zero or one instance (?)2

That is, r? is equivalent to r|Ɛ, or put another way, L(r?) = L(r) U {Ɛ}.

The operator ? has the same precedence and associativity as the operator + and *.

The unary, postfix operator ? means "zero or one occurrence."

Extensions of Regular Expressions (3)

More importantly, when a1 , a2, ... , an , form a logical sequence, e.g., consecutive
uppercase letters, lowercase letters, or digits, we can replace them by a1-an , that
is, just the first and last separated by a hyphen.

A regular expression a1|a2| ... |an , where the ai's are each symbols of the
alphabet, can be replaced by the shorthand [a1a2 . . . an].

Thus, [abc] is shorthand for a|b|c, and [a-z] is shorthand for a|b| . . . |z.

Character Classes (shorthand) 3

Extensions of Regular Expressions (4)

Recognition of Tokens
Tokens are recognized with transition diagram.

(A grammar for branching statements)

(Patterns for tokens)

Recognition of Tokens (2)

Tokens, their patterns, and attribute values

Transition Diagrams
Intermediate step in constructing lexical analyzer, we first convert patterns
into flowcharts called transition diagrams. (the conversion from regular-
expression patterns to transition diagrams)

Transition diagrams have:

States: collection of nodes or circles1

→ Each state represents a condition that could occur during the process of scanning the
input looking for a lexeme that matches one of several patterns.

2 Edges: directed from one state to another.

→ Each edge is labeled by a symbol or set of symbols.

Transition Diagrams (2)
Some important conventions about transition diagrams are:

Start state or initial state1

→ indicated by an edge, labeled "start", entering from nowhere.

→ The transition diagram always begins in the start state before any input symbols have
been read.

Accepting or final states:2

→ indicates that a lexeme has been found, represented using a double circle.

if there is an action to be taken, typically returning a token and an attribute value to
the parser, we shall attach that action to the accepting state.

→

In addition, if it is necessary to retract the forward pointer one position (i.e., the
lexeme does not include the symbol that got us to the accepting state), then we
shall additionally place a * near that accepting state.

3

Accepting or final states:2 Accepting or final states:2

Transition Diagrams (3)
Transition Diagram for relop

Transition Diagrams (3)
Initial state Accepting or final state

Actions associated
with final state

Transition Diagrams (3)

retract the forward pointer

Transition Diagrams (4)
Transition Diagram for id’s and keywords

Transition Diagrams (5)
Transition Diagram for number

Transition Diagrams (6)
Transition Diagram for whitespaces

Implementation of Transition Diagrams

References

R Reference for this topic

Book: Alfred V. Aho, Monica S. Lam, Ravi Sethi, J D Ullman, Compilers: Principles,
Techniques, and Tools, 2nd Edition, Prentice Hall, 2006.

Web: CS143 Compilers, Lecture 4, Stanford University.
[https://cs.nyu.edu/courses/Fall12/CSCI-GA.2130-001/lecture4.pdf]

Web: Theory of Computation by Ms. Vandita Grover, Assistant Professor, ANDC,
University of Delhi

[https://sites.google.com/view/courses-vanditagrover/home/ToC-Resources]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

