
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

BHCS15B: System Programming

Course Web Page
(www.mkbhandari.com/mkwiki)

Introduction to Compilers

Outline

Overview of Compilation1

Phases of Compilation2

Introduction
Programming languages are notations for describing computations to people
and to machines.

All the software running on all the computers are written in some
programming language.

→ The software systems that do this translation are called compilers.

A program must be translated into a form in which it can be executed by a
computer.

→ The world depends on programming languages.

Language Processors
Compiler

→ A program that can read a program in one language (the
source language) and translates it into an equivalent
program in another language (the target language).

→ An important role of a compiler is to report errors in the
source program that it detects during the translation
process.

Error msg.

Language Processors
Compiler

→ A program that can read a program in one language (the
source language) and translates it into an equivalent
program in another language (the target language).

→ If the target program is an executable machine-language
program, it can then be called by the user to process input
and produce outputs.

Error msg.

→ An important role of a compiler is to report errors in the
source program that it detects during the translation
process.

Language Processors (2)
Interpreter

→ It is another common kind of language processor.

→ It appears to directly execute the operations specified in the source program on
inputs supplied by the user

→ A compiler is usually much faster than an interpreter at mapping inputs to
outputs.

→ An interpreter gives better error diagnostics than a compiler, because it executes
the source program statement by statement.

Language Processors (3)
A Hybrid Compiler → Java language processors combine compilation and

interpretation

→ A Java source program are first be compiled into an
intermediate form called bytecodes.

→ The bytecodes are then interpreted by a virtual machine.

→ A benefit of bytecodes is it is plateform independent
(program compiled on one machine can be interpreted on
another machine, perhaps across a network).

→ A just-in-time compilers in JVM helps to to achieve faster
processing of inputs to outputs

→ Just-in-time compilers, translate the bytecodes into
machine language immediately before they run the
intermediate program to process the input.

Preprocessor

Compiler

Loader/Linker

Assembler

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Machine Code

Absolute Machine Code

Language Processors (4)

Library files,
Relocatable Object
Code

The structure of a Compiler
So far, we have treated a compiler as a single box (unit) that maps a source
program into semantically equivalent target program.

It can be broadly divided into two parts:

Analysis (Front end of compiler)1

Synthesis (Back end of compiler)2

The structure of a Compiler (2)
Analysis part: breaks up the source program into constituent pieces and
imposes a grammatical structure on them.

Grammatical structure is then used to create an intermediate representation
of the source program.

If it detects that the source program is either syntactically ill formed or
semantically unsound, then it must provide informative messages, so the
user can take corrective action.

It also collects information about the source program and stores it in the
symbol table, which is passed along with the intermediate representation to
the synthesis part.

The structure of a Compiler (3)
Synthesis part: constructs the desired target program from the intermediate
representation and the information in the symbol table.

Compilation process: operates as a sequence of phases. Each phase takes
input from its previous stage, has its own representation of source program,
and feeds its output to the next phase of the compiler.

A typical decomposition of a compiler into phases is shown in next slide ->>

Phases of a Compiler
character stream

Target -machine code

Phases of a Compiler
character stream

Target -machine code

→ The lexical analyzer reads the stream of characters
(source program) and groups the characters into
meaningful sequences called lexemes.

Lexical Analysis (Scanning):

→ For each lexeme, the lexical analyzer produces as
output a token of the form:

(token-name, attribute-value)

→ Tokens are then passed on to the next phase, i.e.,
syntax analysis.

→ Please see the example in Translation phase.jpg.

Phases of a Compiler
character stream

Target -machine code

→ The parser uses tokens produced by the lexical
analyzer to create a syntax tree (an IR that depicts
the grammatical structure of the token stream)

Syntax Analysis (Parsing):

→ In syntax tree each interior node represents an
operation and the children of the node represents
the arguments of the operation.

→ Please see the example in Translation phase.jpg.

Phases of a Compiler
character stream

Target -machine code

→ The semantic analyzer uses the syntax tree and the
information in the symbol table to check the
source program for semantic consistency with the
language definition.

Semantic Analysis:

→ It also gathers type information and saves it either
in the syntax tree or the symbol table, for
subsequent use during intermediate-code
generation.

→ Please see the example in Translation phase.jpg.

→ Type checking is also done in this phase, where
each operator is checked for matching operands.

Phases of a Compiler
character stream

Target -machine code

→ During compilation process, a compiler may
construct one or more intermediate represent-
ations (IRs), which can have a variety of forms.

Intermediate Code Generation:

→ Syntax trees are a form of IR, commonly used
during syntax and semantic analysis.

→ Please see the example in Translation phase.jpg.

→ After syntax and semantic analysis, many
compilers generate an explicit low-level or
machine-like IR (program for an abstract machine).

→ This IR should be easy to produce and easy to
translate into the target machine.

Phases of a Compiler
character stream

Target -machine code

→ The machine-independent code-optimization phase
attempts to improve the intermediate code so that
better target code will result.

Code Optimization:

→ Please see the example in Translation phase.jpg.

→ A simple intermediate code generation algorithm
followed by code optimization is a reasonable way
to generate good target code.

faster
shorter

Phases of a Compiler
character stream

Target -machine code

→ The code generator takes as input an IR of the
source program and maps it into the target
language.

Code Generation:

→ Please see the example in Translation phase.jpg.

→ Then, the intermediate instructions are translated
into sequence of machine instruction

→ If target language is machine code, then registers
or memory locations are selected for each
variables used by the program.

→ Judicious assignment of the registers is the crucial
aspect of code generation.

Phases of a Compiler
character stream

Target -machine code

→ Records the variable names used in source
program and collect information about their
attributes:

Symbol Table Management

→ Please see the example in Translation phase.jpg.

Storage allocation, type, scope

Number and type of arguments
Pass by value or pass by reference
Type returned

→ It should be designed such that, the store and
retrieve operations are quick.

→ In case of procedures names:

Phases of a Compiler
character stream

Target -machine code

→ In the implementation of a compiler, activities from
several phases may be grouped together into a
pass that reads an input file and writes an output
file.

The grouping of Phases into Passes

→ Back-end pass consisting of code generation for a
particular target machine.

→ Front-end phases (lexical analysis, syntax analysis,
semantic analysis, intermediate code generation)
are grouped together into one pass:

→ Code optimization might be an optional pass.

References

R Reference for this topic

Book: Alfred V. Aho, Monica S. Lam, Ravi Sethi, J D Ullman, Compilers: Principles,
Techniques, and Tools, 2nd Edition, Prentice Hall, 2006.

Web: CS143 Compilers, Lecture 1, Stanford University.
[https://web.stanford.edu/class/cs143/]

Web: Tutorialspoint.com, Compiler Design - Phases of Compiler
[www.tutorialspoint.com/compiler_design/compiler_design_phases_of_compiler.htm]

https://web.stanford.edu/class/cs143/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

