
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

BHCS15B: System Programming

Course Web Page
(www.mkbhandari.com/mkwiki)

Linker and Loader

Outline

Linking1

Static vs Dynamic Linking1

Combining Object Modules2

Pass I of Linking3

Library Linking2

Position Independent Code (PIC)3

Pass II of Linking4

Shared Library Linking4

Loader5

Linking
Linking is the process of combining different object modules into one
executable file.

Assembler produces code assuming the start address of each section to be
zero.

Symbols defined in a section of some object module may be used as an
external reference in some other module.

→ When combined into one file, the offsets of the symbols in the program may need re-
computation

→ However after linking, the offsets should be calculated starting from the beginning of
the program.

→ Linker needs to fill up these blanks left by the assembler, from SYMTAB (external
symbols, global symbols)

Linking – Input and output of a Linker

Linking – Input of a Linker (1)

Object files: the modules to be combined to create the executable version of
the program.

1

Static File: the standard pre-compiled libraries (archive files) containing
individual object files for the library modules.

2

Shared Library stubs: contains the common set of functions to be used by
almost all the programs running in a system.

3

→ Modules are specified in some special format.

→ A recursive searching process, continues until a complete set of required library modules
have been determined.

→ Instead of loading the same set of routines several times, they are loaded at a single place in
the memory, these routines are written as Position Independent Code(PIC).

Linking – Output of a Linker (2)

Executable file: the program which is ready for execution, that is, it may be
loaded into the memory and start executing.

1

External table: the shared library routines.2

→ Where these libraries are loaded is not known at the time of linking the program.

→ Moreover, this position may vary from one execution of the program to another.

→ Thus, the linker leaves a table of all such external reference for the loader to fill up and make
the program fully ready for execution.

Static vs. Dynamic Linking
Static Linking : all addresses are resolved before the program is loaded into
memory for execution.

→ The Logical address is checked to determine if it refers to a routine or variable that must
be dynamically linked. The information regarding the dynamically linkable objects are
kept in a link table.

→ If the address referred to is a valid one, the memory management state of the program
is adjusted to reflect the allowed address range for the program.

→ The instruction causing exception is then restarted.

Dynamic Linking (or Deferred Linking) : links modules on demand. In this
case, when an address exception occurs, the exception handler is called
which does the following:

Static vs. Dynamic Linking (2)

Combining Object Modules
The sections of object modules are combined to produce a single executable
module.

The SECTION directive can have some associated attributes specified. All
object file formats (elf, obj, etc.) have their corresponding similar set of
attributes.

For an elf object file format, NASM allows the following qualifiers to the
SECTION declaration:

alloc defines the section to be one which is loaded into memory when the program is run.
noalloc defines it to be one which is not.

exec defines the section to be one which should have execute permission when the
program is run. noexec defines it as one which should not.

write defines the section to be one which should be writable when the program is run.
nowirte defines it as one which should not.

Combining Object Modules (2)

Defaults assumed by NASM(if no above qualifiers are specified):

progbits defines the section to be one with explicit contents stored in the object file: an
ordinary code or data section. nobits defines the section to be one with no explicit contents
given, such as BSS section.

align= used with a trailing number, gives the alignment requirements of the section.

align=x means that segment can start only at an address divisible by
x

→

section .text progbits alloc exec nowrite align=16

section .rodata progbits alloc noexec nowrite align=4

section .data progbits alloc noexec write align=4

section .bss nobits alloc noexec write align=4

section other progbits alloc noexec nowrite align=1

Combining Object Modules (3)

All the information is added to the section table by the assembler and used by
the linker to combine the sections into executable file.

The process of combining can be divided into two passes:

Pass I: the relative position of all sections is computed, assuming the start offset
of the file to be zero.

1

Pass II: puts the code into the file.2

Pass I of Linking

It computes the start addresses of different sections in the input object
modules and collects symbols defined public.

It looks into the section tables and symbol tables to construct a Combined
Section Table(CST) and a Public Definition Table(PDT). The structures are:

Section name Start address Size Align

Symbol name Section name Offset

(a) Combined Section Table(CST)

(b) Public Definition Table (PDT)

Pass I of Linking (Flowchart)

Please see the flowchart: Pass I of Linking

Here lc is used to keep track of how much of
the output file (executable module) is already
occupied and thus the place where a new
segment can be stored. lc is initialized to zero.

Next the sections are read from the object files
one after the other.

Next possible start address of the section in the
executable module is computed.

If the section is a new section(does not exist in
CST) then its start address is computed by
considering the current lc value and alignment
requirements of the section.

If lc does not satisfy the align specification, the
immediate next address satisfying it is selected
as the start address.

If the section is a already present in the CST,
the possible start address is computed as the
current start address(of the section) in the CST
plus the current size of the section as noted in
CST.

Next the current size of the section in CST is
added to the offsets of all public symbols
defined in this section. All pubic definitions are
now put into the PDT.

The CST is updated next.

If a new section is being considered, entries
are made into CST and lc is updated by the
start address plus the size of the section.

No other modification is needed for the CST.
However, if the section name is already present
in the CST, only the size field needs to be
increased for that entry.

For subsequent entries, the start addresses are
to be increased by the size of the current
section being considered.

The process continues till all sections in all
object files have been considered. Then control
passes to Pass II of linking producing the
executable file.

Pass I of Linking (Example)

Lets assume a set of object files named a.obj, b.obj, and c.obj be given to the
linker to produce the executable file.

The section and symbol tables (showing the public declarations only) for all
object files are shown in the next slide.

The Combined Section Table(CST) and Public Definition Table(PDT) are shown
in the next to next slide.

Pass I of Linking (Example)

Pass I of Linking (Example)

Pass II of Linking

It is responsible for writing the final code into the executable file.

The Combined Section Table(CST) contains information about the relative
positions of sections within this final file to be created.

The important tasks of this phase is:

Copy the object files into their corresponding locations. 1

Offset correction or Relocation2

Pass II of Linking - Relocation

The assembler, while generating object code module, assumes the start
addresses of individual sections to be zero.

However, while linking, all the object modules are to be combined into one
executable module and all offsets should be taken with respect to the start
of the module.

→ All references to variables are translated to their distances from the beginning of the section
containing them.

Thus, the code corresponding to instructions containing memory references
needs to be corrected, the process is called relocation. It is useful for:

Moving around object files during linking, and1

Loading a piece of code at a specified address.2

Pass II of Linking – Relocation (2)

Relocation, needs to be carried out both at link-time and load-time.

At link-time, relocation is needed to arrange the object files into the
executable module starting at offset zero.

Link-time relocation is performed using direct editing that will modify the
address sensitive locations within the code during concatenating object
modules. Locations requiring relocation can be specified in two different ways:

At load-time, relocation is needed for arranging shared libraries and the
executable module into address space.

Relocation bitmap1

Relocation table2

Pass II of Linking – Relocation (3)
Relocation bitmap1

Relocation table2

→ For every instruction, the assembler associates a relocation bit.

→ If the instruction does not need any relocation (that is, instruction not involving memory
address), the bit is set to zero, else the bit is set to one.

→ For cases with relocation bit=1, Pass II of linking does the necessary modification to the code.

→ It is a table consisting of locations requiring corrections and a Delta value that should be
added to the offset of the symbol to get the address corrected.

Algorithm for Pass II of Linking (Flowchart)

Please see the flowchart: Pass II of Linking

In pass II, the object files are read again per section
and the corresponding codes with necessary
relocation changes are put into the executable file.

For each section that is read, its start address is
looked for in the CST produced in pass I.

The code corresponding to this section is next put
into the executable module.

The CST entries for the section are updated by
incrementing the start address of the section by the
size of the current section read, and the size field in
CST is decremented by the size of the section.

This ensures that a subsequent occurrence of a
section with the same name will get concatenated to
the end of this section.

Moreover, when all sections have been put into the
executable module, the size field of all entries in CST
will become zero.

Next, the code written into the file is modified to
sort out the relocation problems(if any).

→ For each entry marked as requiring relocation, the start
address of the section in which the symbol has been
defined is added to the code. (ensures all offsets are with
respect to the start address of the executable module)

→ Load time relocations is done for shared libraray functions
and/or variables.(The linker will produce a list of such
locations)

Another important information passed by the linker
to the loader is the start address of the program.

→ For example, the language C expects a unique function
main, to be present in the executable module that defines
the start address.

→ In our example, we have use global symbol main which is
used by gcc linker to pass on the start address information
to the loader.

Pass II of Linking (Example)

Modification in CST

Pass II of Linking (Layout of Executable)

Please see the layout of Executable: (Pass II of Linking example)

Library Linking

Object modules contains symbols defined by the user and external symbols
defined in library modules

→ For example mathematical routines are grouped together into a library, string manipulation
functions may be in another one.

External libraries are usually provided in two forms:
Static libraries1

Shared libraries 2

→ This facilitates the user to refer to a particular library and include it along with other object
modules for complete execution

In Linux, static libraries have extension “.s” whereas for shared libraries, the
extension is “.so”.

Library Linking (2)

Static Library
→ For each of the external functions used by the program, the corresponding machine code is

copied from the object file containing the library.

→ The extracted code is attached with other modules to create the overall executable module.

→ However, in some linkers, instead of including the particular function, the entire library object
module is included in the code.

Shared Library
→ It can be the sharing of code located on disk by unrelated programs.

→ It can also be sharing of code in memory. (the programs execute the same piece of code
loaded at the same physical page of the memory, but mapped to the address spaces of the
programs)

→ Main memory sharing can be accomplished by using Position Independent Code(PIC) as in
UNIX.

Library Linking (3)

→ By using various techniques(such as pre-mapping the address space) reserving slots for the
shared library modules.(DLL in windows)

→ In most modern OS’s shared libraries can be of the same format as the regular executables.

→ Two main advantages:
(1) it requires making only one loader for both of them.
(2) It allows the executables also to be used as DLLs, if they have symbol table.

→ Most dynamic library systems link a symbol table with blank addresses into the program at
compile/assemble time.

→ All references to code or data in the library pass through this table, the import directory.

→ At load time, the table is modified with the location of the library code/data by the
linker/loader.

Position Independent Code (PIC)

PIC is a form of absolute object code that does not contain any absolute
addresses and therefore does not depend on where it is loaded in the
process’s virtual address space.

An important property for building shared libraries.

IP-relative addressing: is used wherever possible for branches within modules.1

Indirect addressing: is used for all accesses to global variables, or for intermodule
procedure calls and other branches and literal accesses where IP-relative addresses
cannot be used.

2

PIC is achieved via the two mechanisms:

Position Independent Code (PIC)

Advantages:
→ No need to relocate.

→ Library is shared on disk.

→ Library is shared on primary memory as well. All the page tables of various processes can
share the main memory frames for the library.

Disadvantages:
→ One register is used to hold pointer to the indirect table.

→ Each method invocation needs two memory accesses.

→ Another register is used to access the variables in the shared library.

→ Each access to variable in the shared library requires tow memory accesses.

Loader

Loading is the process of making a program ready for execution by copying
the file from secondary storage to primary or virtual memory.

→ It is often a part of operating system, and thus not visible to the system user directly.

The major objectives of a loader are:
Bring a binary image into memory.1

Bind relocatable addresses to absolute addresses. 2

Linker gives a single executable module which needs to be further coupled
with the shared libraries that may or may not be already loaded.

The task of loader is now:
(1) to locate the position of the shared library,
(2) correct the appropriate entries in the executable referring to shared library routines and variables ,
(3) create the binary image that is ready for execution.

Input-Output of the Loader

Binary Image

The binary image of a program consists of the following components:

→ Indicates the type of the image (an exe. file, some library etc.).

A header:1

Text of the program 2

→ Loaded at some preassigned address, or it may be determined by consulting memory
management routine.

→ It consists of the actual piece of code (may be in some specific formats).

→ It holds the object files, static libraries, and stub tables for shared libraries

List of shared libraries3

→ The shared library routines that are called by the module. The loaders needs to resolve the
addresses accordingly.

Types of Loaders

There are three categories of loaders, namely:

Absolute loader1

Relocating loaders2

Linking Loaders3

→ The assembler generates code and writes instructions in a file together with their load
address.

→ The loader reads the file and places the code at the absolute address given in the file.

→ The assembler generates code and the relocation information.

→ The loader, while loading the program performs relocation as well.

→ This type of loaders will do the linking with shared libraries as well.

Types of Loaders (2)

Bootstrap loader
→ It is executed when the computer is first turned on or restarted.

→ It is a simple absolute loader.

→ Its function is to load the first system program to be run by the computer, i.e., operating system
or a more complex loader that loads the rest of the system.

→ Bootstrap loader is coded as a fixed-length record and added to the beginning of the system
programs that are to be loaded into an empty system.

→ A built-in hardware or a very simple program in ROM reads this record into memory and
transfers control to it.

→ When it is executed, it loads the program which is either the OS itself or other system programs
to be run without the OS.

Types of Loaders (3)

Bootstrap loader

References

R Reference for this topic

Book: Systems Programming, Santanu Chattopadhyaya, PHI, 2011.

PPT: Hsung-Pin Chang, Department of Computer Science, National Chung Hsing
University, Chapter 3: Loaders and Linkers(for additional reading)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

