
Mahesh Kumar
(maheshkumar@andc.du.ac.in)

BHCS15B: System Programming

Course Web Page
(www.mkbhandari.com/mkwiki)

Introduction

Outline

Introduction1

System Software and Machine Architecture2

Traditional (CISC) Machines and RISC Machines [self study]4

Simplified Instructional Computer (SIC)3

Introduction
System Software:

Consists of a variety of programs that support the operation of a computer.

The software makes it possible for the user to focus on an application without
needing to know the details of how the machine works internally.

Introduction (2)

Preprocessor

Compiler

Loader/Linker

Assembler

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Machine Code

Absolute Machine Code

Library files,
Relocatable Object
Code

Introduction (3)

Preprocessor

Compiler

Loader/Linker

Assembler

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Machine Code

Absolute Machine Code

Introduction (4)

Text editor: create and modify the programs

Compiler: translate programs into machine language

Linker: performs the linking task

Loader: load machine language program into
memory and prepares for execution

Assembler: translate assembly program into
machine language

Macro processor: translate macros instructions into
its definition

Debugger: detect errors in the program

Different types of System Software:

Library files,
Relocatable Object
Code

OS: You control all the above by interacting with the
operating system.

Introduction (5)
Input-Output of an Assembler

[Source 3]

Introduction (6)
Input-Output of an Linker

[Source 3]

Introduction (7)
Input-Output of an Loader

[Source 3]

Program Development Flow ->

[Source 2]

System Software and Machine Architecture
One characteristic in which most system software differ from application
software is machine dependency.

System programs are intended to support the operation and use of the
computer itself, rather than any particular application.

Application programs are primary concerned with the solution of some problem,
using the computer as a tool.

Example:
Assembler translates mnemonic instructions into machine code.

Compilers must generate machine language code.

OS is directly concerned with the management of nearly all of the resources of a
computing system.

 - instruction formats, addressing modes, etc..

 - number and type of registers, machine instructions available, etc..

System Software and Machine Architecture (2)
Important machine structures to the design of system software:

Memory Structure

Registers

Data Formats

Instruction Formats

Instruction set

Addressing Modes

System Software and Machine Architecture (3)

The general design and logic of an assembler is basically the same on most
computers.

Some of the code optimization techniques used by compilers are independent of
the target machine.

The process of linking together independently assembled subprograms do not
usually depend on the computer being used.

Some aspects of system software that do not directly depend upon the
machine architecture are:

System Software and Machine Architecture (4)

SIC is a hypothetical computer that includes the hardware features most often
found on real machines, while avoiding unusual or irrelevant complexities.

Features that are fundamental

Features that are architecture dependent

Simplified Instructional Computer (SIC)

While understanding any system software, we should identify:

Extended features that are relatively machine independent

Major design options for structuring the software

Optional features

Simplified Instructional Computer (SIC)

The Standard Model

XE version (Extra Equipment)

SIC is a hypothetical computer that includes the hardware features most
often found on real machines, while avoiding unusual or irrelevant
complexities.

SIC comes in two version:

An object program for the standard SIC will also execute properly on a SIC/XE
system

These two versions has been designed to be upward compatible

 - ”extra equipment” , “extra expensive”

1

2

SIC Machine Architecture

1 byte = 8-bit

Memory

1 word=3 consecutive bytes

Total 32,768 (215) bytes, 32KB of memory.

Memory is byte addressable

 - Addressed by the location of their lowest numbered byte

SIC Machine Architecture (2)

Five Registers, all of which have a special use.

Registers

Each register is 24 bits in length.

Mnemonic Number Special Use

A

X

L

PC

SW

0

1

2

8

9

Accumulator

Index register

Linkage register(JSUB)

Program counter

Status word(Condition Code)

SIC Machine Architecture (3)
Status Word register contents

Bit positions Field name Use

0 MODE 0=user mode, 1=supervisor mode

1 IDLE 0=running, 1=idle

2-5 ID Process identifier

6-7 CC Condition code

8-11 MASK Interrupt mask

12-15 Unused

16-23 ICODE Interruption code

SIC Machine Architecture (4)
Data Formats

Integers: stored as 24-bit binary numbers;

Characters: stored as 8-bit ASCII codes

No floating-point hardware

Instruction Formats

8 1 15

opcode x address

 - 2’s complement representation is used for negative values

24-bit format

The flag bit x is used to indicate indexed-addressing mode

SIC Machine Architecture (5)
Addressing Modes

There are two addressing modes available

Mode Indication Target address calculation

Direct

Indexed

x=0

x=1

TA=address

TA=address+(X)

- (X) represents the contents of a register or a memory location

 - indicated by the setting of x bit in the instruction

SIC Machine Architecture (6)
Addressing Modes (Direct)

Example: LDA TEN

- Effective Address (EA) = 1000

- Contents of the address 1000

opcode x Ten

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 0

SIC Machine Architecture (7)
Addressing Modes (Indexed)

Example: STCH BUFFER, X

- Effective Address (EA) = 1000 + [X]

- The Accumulator content, the character is loaded to the Effective address.

opcode x BUFFER

0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 5 4 1 0 0 0

= 1000 + contents of the index register X

SIC Machine Architecture (8)
Instruction Set (SIC provides a basic set of instructions sufficient for simple tasks)

load and store instructions: LDA, LDX, STA, STX, etc.

integer arithmetic operations: ADD, SUB, MUL, DIV, etc.
 - All arithmetic operations involve a register A and a word in memory, with the result being
 left in the register.

comparison: COMP
 - COMP compares the value in register A with a word in memory
 - This instruction sets a condition code CC in SW (Status Word) to indicate the result (<,=,or >)

conditional jump instructions: JLT, JEQ, JGT
 - These instructions test the setting of CC and jump accordingly

subroutine linkage: JSUB, RSUB
 - JSUB jumps to the subroutine, placing the return address in register L
 - RSUB returns by jumping to the address contained in register L

SIC Machine Architecture (9)
Input and Output

Input and output are performed by transferring 1 byte at a time to/from the
rightmost 8 bits of register A.

Three I/O instructions:

 - Tests whether the addressed device is ready to send or receive a byte of data
Test Device (TD)

Read Data (RD)

 - Condition code is set to indicate the result (<: ready, =: not ready)

Write Data (WD)

1

Each device is assigned a unique 8-bit code.

2

3

SIC/XE Machine Architecture

Almost the same as that previously described for SIC.

Memory

However, 1 MB (220 bytes) maximum memory available.

More additional registers are provided by SIC/XE

Registers

Mnemonic Number Special Use

B

S

T

F

3

4

5

6

Base register

General working register

General working register

Floating-point accumulator (48 bits)

SIC/XE Machine Architecture (2)

[Source 1 & 4]

SIC/XE Machine Architecture (3)

[Source 1 & 4]

SIC/XE Machine Architecture (4)

[Source 1 & 4]

SIC/XE Machine Architecture (4)

Format 1 (1 byte)

8

opcode

Example : RSUB (Return to subroutine)

opcode

0 1 0 0 1 1 0 0

 4 C

SIC/XE Machine Architecture (4)

Format 2 (2 bytes)

8 4 4

opcode r1 r2

Example : COMPR A, S (Compare the contents of register A and S)

opcode A S

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

A 0 0 4 object code

SIC/XE Machine Architecture (4)

Format 3 (3 bytes)

Example : LDA #3 (Load 3 to Accumlator)

6 1 1 1 1 1 1 12

opcode n i x b p e disp

6 1 1 1 1 1 1 12

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

 0 1 0 0 0 3 object code

SIC/XE Machine Architecture (4)

Format 4 (4 bytes)

Example : +JSUB RDREC (Jump to the address, 1036)

6 1 1 1 1 1 1 20

opcode n i x b p e address

6 1 1 1 1 1 1 20

0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0

 4 B 1 0 1 0 3 6 object code

SIC/XE Machine Architecture (5)

[Source 1 & 4]

SIC/XE Machine Architecture (6)

[Source 1 & 4]

SIC/XE Machine Architecture (7)

[Source 1 & 4]

SIC/XE Machine Architecture (8)

[Source 1 & 4]

SIC/XE Machine Architecture (9)

[Source 1 & 4]

SIC/XE Machine Architecture (10)

[Source 1 & 4]

[Source 1 & 4]

Example of SIC/XE instructions and addressing modes.

[Source 1 & 4]

SIC/XE Machine Architecture (11)
Instruction Set (SIC/XE add the following new instructions in addition to SIC instructions)

Load and store new instructions:
LDB, STB, etc.

Register move:
RMO

Floating-point arithmetic:
ADDF, SUBF, MULF, DIVF

Register-to-register arithmetic:
ADDR, SUBR, MULR, DIVR

Supervisor call instruction
SVC - Generates an interrupt for communicating with OS

SIC/XE Machine Architecture (12)
Input and Output

The I/O instructions for SIC are also available on SIC/XE.

The instructions SIO, TIO, and HIO are used to start, test, halt the operation of
I/O chennels.

There are I/O channels that can be used to perform input and output while the
CPU is executing other instructions.

 - Allows overlap of computing and I/O, resulting in more efficient system
 operations.

Traditional (CISC) Machines and RISC Machines
CISC

VAX Architecture

UltraSPARC Architecture

Pentium Pro Architecture

RISC

PowerPC Architecture

Cray T3E Architecture

Previous Year Questions?

1

2

3

Differentiate between System Software and Application Software 3M

List the format of 3 byte and 4 byte instructions available in SIC/XE machine 3M

List the various instruction formats of SIC/XE machine. 4M

References

R Reference for this topic

Book: System Software: An Introduction to System Programming, Third Edition,
Leland L. Beck and D. Manjula, Pearson Education.

PPT: Hsung-Pin Chang, Department of Computer Science, National Chung Hsing
University, Chapter 1: Background

Book: System Software, S. Chattopadhyaya (2011), PHI Learning.

Book: Alfred V. Aho, Monica S. Lam, Ravi Sethi, J D Ullman, Compilers: Principles,
Techniques, and Tools, 2nd Edition, Prentice Hall, 2006.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

