Chapter 8
Code Generation

The final phase in our compiler model is the code generator. It takes as input
the intermediate representation (IR) produced by the front end of the com-
piler, along with relevant symbol table information, and produces as output a
semantically equivalent target program, as shown in Fig. 8.1.

The requirements imposed on a code generator are severe. The target pro-
gram must preserve the semantic meaning of the source program and be of
high quality; that is, it must make effective use of the available resources of the
target machine. Moreover, the code generator itself must run efficiently.

The challenge is that, mathematically, the problem of generating an optimal
target program for a given source program is undecidable; many of the subprob-
lems encountered ini code generation such as register allocation are computa-
tionally intractable. In practice, we must be content with heuristic techniques
that generate good, but not necessarily optimal, code. Fortunately, heuristics
have matured enough that a carefully designed code generator can produce code
that is several times faster than code produced by a naive one.

Compilers that need to produce efficient target programs, include an op-
timization phase prior to code generation. The optimizer maps the IR into
IR from which more efficient code can be generated. In general, the code-
optimization and code-generation phases of a compiler, often referred to as the
back end, may make multiple passes over the IR before generating the target
program. Code optimization is discussed in detail in Chapter 9. The tech-
niques presented in this chapter can be used whether or not an optimization
phase occurs before code generation.

A code generator has three primary tasks: instruction selection, register

| |]
source Front |intermediate! Code 'intermediate | Code target
——] R | S telmmehvaruidat = ——
program End code 'Optimizer! code Generator| program

Figure 8.1: Position of code generator

505

506 CHAPTER 8. CODE GENERATION

allocation and assignment, and instruction ordering. The importance of these
tasks is outlined in Section 8.1. Instruction selection involves choosing appro-
priate target-machine instructions to implement the IR statements. Register
allocation and assignment involves deciding what values to keep in which reg-
isters. Instruction ordering involves deciding in what order to schedule the
execution of instructions. '

This chapter presents algorithms that code generators can use to trans-
late the IR into a sequence of target language instructions for simple register
machines. The algorithms will be illustrated by using the machine model in Sec-
tion 8.2. Chapter 10 covers the problem of code generation for complex modern
machines that support a great deal of parallelism within a single instruction.

After discussing the broad issues in the design of a code generator, we show
what kind of target code a compiler needs to generate to support the abstrac-
tions embodied in a typical source language. In Section 8.3, we outline imple-
mentations of static and stack allocation of data areas, and show how names in
the IR can be converted into addresses in the target code.

Many code generators partition IR instructions into “basic blocks,” which
consist of sequences of instructions that are always executed together. The
partitioning of the IR into basic blocks is the subject of Section 8.4. The
following section. presents simple local transformations that can be used to
transform basic blocks into modified basic blocks from which more efficient
code can be generated. These transformations are a rudimentary form of code
optimization, although the deeper theory of code optimization will not be taken
up until Chapter 9. An example of a useful, local transformation is the discovery
of common subexpressions at the level of intermediate code and the resultant
replacement of arithmetic operations by simpler copy operations.

Section 8.6 presents a simple code—generafion algorithm that generates code
for each statement in turn, keeping operands in registers as long as possible.
The output of this kind of code generator can be readily improved by peephole
optimization techniques such as those discussed in the following Section 8.7.

The remaining sections explore instruction selection and register allocation.

8.1 Issues in the Design of a Code Generator

While the details are dependent on the specifics of the intermediate represen-
tation, the target language, and the run-time system, tasks such as instruction
selection, register allocation and assignment, and instruction ordering are en-
countered in the design of almost all code generators.

The most important criterion for a code generator is that it produce cor-
rect code. Correctness takes on special significance because of the number of
special cases that a code generator might face. Given the premium on correct-
ness, designing a code generator so it can be easily implemented, tested, and
maintained is an impbrtant design goal. :

8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 507

8.1.1 Input to the Code Generator

The input to the code generator is the intermediate representation of the source
program produced by the front end, along with information in the symbol table
that is used to determine the run-time addresses of the data objects denoted
by the names in the IR.

The many choices for the IR include three-address representations such as
quadruples, triples, indirect triples; virtual machine representations such as
bytecodes and stack-machine code; linear representations such as postfix no-
tation; and graphical representations such as syntax trees and DAG’s. Many
of the algorithms in this chapter are couched in terms of the representations
considered in Chapter 6: three-address code, trees, and DAG’s. The techniques
we discuss can be applied, however, to the other intermediate representations
as well.

In this chapter, we assume that the front end has scanned, parsed, and
translated the source program into a relatively low-level IR, so that the values
of the names appearing in the IR can be represented by quantities that the
target machine can directly manipulate, such as integers and floating-point
numbers. We also assume that all syntactic and static semantic errors have
been detected, that the necessary type checking has taken place, and that type-
conversion operators have been inserted wherever necessary. The code generator
can therefore proceed on the assumption that its input is free of these kinds of
erTors.

8.1.2 The Target Program

The instruction-set architecture of the target machine has a significant im-
pact on the difficulty of constructing a good code generator that produces
high-quality machine code. The most common target-machine architectures
are RISC (reduced instruction set computer), CISC (complex instruction set
computer), and stack based.

A RISC machine typically has many registers, three-address instructions,
simple addressing modes, and a relatively simple instruction-set architecture.
In contrast, a CISC machine typically has few registers, two-address instruc-
tions, a variety of addressing modes, several register classes, variable-length
instructions, and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a
stack and then performing the operations on the operands at the top of the
stack. To achieve high performance the top of the stack is typically kept in
registers. Stack-based machines almost disappeared because it was felt that
the stack organization was too limiting and required too many swap and copy
operations.

However, stack-based architectures were revived with the introduction of
the Java Virtual Machine (JVM). The JVM is a software interpreter for Java
bytecodes, an intermediate language produced by Java compilers. The inter-

508 CHAPTER 8. CODE GENERATION

preter provides software compatibility across multiple platforms, a major factor
in the success of Java.

To overcome the high performance penalty of interpretation, which can be
on the order of a factor of 10, just-in-time (JIT) Java compilers have been
created. These JIT compilers translate bytecodes during run time to the native
hardware instruction set of the target machine. Another approach to improving
Java performance is to build a compiler that compiles directly into the machine
instructions of the target machine, bypassing the Java bytecodes entirely.

Producing an absolute machine-language program as output has the ad-
vantage that it can be placed in a fixed location in memory and immediately
executed. Programs can be compiled and executed quickly.

Producing a relocatable machine-language program (often called an object
module) as output allows subprograms to be compiled separately. A set of
relocatable object modules can be linked together and loaded for execution by a
linking loader. Although we must pay the added expense of linking and loading
if we produce relocatable object modules, we gain a great deal of flexibility
in being able to compile subroutines separately and to call other previously
compiled programs from an object module. If the target machine does not
handle relocation automatically, the compiler must provide explicit relocation
information to the loader to link the separately compiled program modules.

Producing an assembly-language program as output makes the process of
code generation somewhat easier. We can generate symbolic instructions and
use the macro facilities of the assembler to help generate code. The price paid
is the assembly step after code generation.

In this chapter, we shall use a very simple RISC-like computer as our target
machine. We add to it some CISC-like addressing modes so that we can also
discuss code-generation techniques for CISC machines. For readability, we use
assembly code as the target language . As long as addresses can be calculated
from offsets and other information stored in the symbol table, the code gener-
ator can produce relocatable or absolute addresses for names just as easily as
symbolic addresses.

8.1.3 Instruction Selection

The code generator must map the IR program into a code sequence that can be
executed by the target machine. The complexity of performing this mapping is
determined by a factors such as

o the level of the IR
e the nature of the instruction-set architecture
o the desired quality of the generated code.

If the IR is high level, the code generator may translate each IR statement
into a sequence of machine instructions using code templates. Such statement-
by-statement code generation, however, often produces poor code that needs

8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 509

further optimization. If the IR reflects some of the low-level details of the un-
derlying machine, then the code generator can use this information to generate
more efficient code sequences.

The nature of the instruction set of the target machine has a strong effect
on the difficulty of instruction selection. For example, the uniformity and com-
pleteness of the instruction set are important factors. If the target machine
does not support each data type in a uniform manner, then each exception to
the general rule requires special handling. On some machines, for example,
floating-point operations are done using separate registers.

Instruction speeds and machine idioms are other important factors. If we
do not care about the efficiency of the target program, instruction selection is
straightforward. For each type of three-address statement, we can design a code
skeleton that defines the target code to be generated for that construct. For
example, every three-address statement of the form x = y +z, where x, y, and z
are statically allocated, can be translated into the code sequence

LD RO, ¥y // RO =y (load y into register RO)
ADD RO, RO, z // RO = RO + z (add z to RO)
ST x, RO // x = RO (store RO into x)

This strategy often produces redundant loads and stores. For example, the
sequence of three-address statements

a=b+c
d=a+e
would be translated into
LD RO, b // RO =D
ADD RO, RO, c // RO = RO + ¢
ST a, RO // a =RO
LD RO, a // RO = a
ADD RO, RO, e // RO = RO + e
ST d, RO // d = RO

Here, the fourth statement is redundant since it loads a value that has just been
stored, and so is the third if a is not subsequently used.

The quality of the generated code is usually determined by its speed and
size. On most machines, a given IR program can be implemented by many
different code sequences, with significant cost differences between the different
implementations. A naive translation of the intermediate code may therefore
lead to correct but unacceptably inefficient target code.

For example, if the target machine has an “increment” instruction (INC),
then the three-address statement a = a+ 1 may be implemented more efficiently
by the single instruction INC a, rather than by a more obvious sequence that

loads a into a register, adds one to the register, and then stores the result back
into a:

510 CHAPTER 8. CODE GENERATION

LD RO, a // RO = a
ADD RO, RO, #1 // RO = RO + 1
ST a, RO // a = RO

We need to know instruction costs in order to design good code sequences
but, unfortunately, accurate cost information is often difficult to obtain. De-
ciding which machine-code sequence is best for a given three-address construct
may also require knowledge about the context in which that construct appears.

In Section 8.9 we shall see that instruction selection can be modeled as a
tree-pattern matching process in which we represent the IR and the machine
instructions as trees. We then attempt to “tile” an IR tree with a set of sub-
trees that correspond to machine instructions. If we associate a cost with each
machine-instruction subtree, we can use dynamic programming to generate op-
timal code sequences. Dynamic programming is discussed in Section 8.11.

8.1.4 Register Allocation

A key problem in code generation is deciding what values to hold in what
registers. Registers are the fastest computational unit on the target machine,
but we usually do not have enough of them to hold all values. Values not held
in registers need to reside in memory. Instructions involving register operands
are invariably shorter and faster than those involving operands in memory, so
efficient utilization of registers is particularly important.

The use of registers is often subdivided into two subproblems:

1. Register allocation, during which we select the set of variables that will
reside in registers at each point in the program.

2. Register assignment, during which we pick the specific register that a
variable will reside in.

Finding an optimal assignment of registers to variables is difficult, even
with single-register machines. Mathematically, the problem is NP-complete.
The problem is further complicated because the hardware and/or the operating
system of the target machine may require that certain register-usage conventions
be observed.

Example 8.1: Certain machines require register-pairs (an even and next odd-
numbered register) for some operands and results. For example, on some ma-
chines, integer multiplication and integer division involve register pairs. The
multiplication instruction is of the form

Mx, vy

where x, the multiplicand, is the even register of an even/odd register pair and
y, the multiplier, is the odd register. The product occupies the entire even Jodd
register pair. The division instruction is of the form

8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 511

Dx,vy

where the dividend occupies an even/odd register pair whose even register is x;
the divisor is y. After division, the even register holds the remainder and the
odd register the quotient.

Now, consider the two three-address code sequences in Fig. 8.2 in which the
only difference in (a) and (b) is the operator in the second statement. The
shortest assembly-code sequences for (a) and (b) are given in Fig. 8.3.

t=a+hb t=a+b

t =1t *c t=%t +c

t=t/d t=t/d
(a) (b)

Figure 8.2: Two three-address code sequences

L BRi,a L RO, a
A R1,b A RO, b
M RO,c A RO, ¢
D RO,d SRDA RO, 32
ST R1,t D RO, d
ST Ri, ¢t

(a) (b)

Figure 8.3: Optimal machine-code sequences

Ri stands for register i. SRDA stands for Shift-Right-Double-Arithmetic and
SRDA RO, 32 shifts the dividend into R1 and clears RO so all bits equal its sign
bit. L, ST, and A stand for load, store, and add, respectively. Note that the
optimal choice for the register into which a is to be loaded depends on what
will ultimately happen to t. O

Strategies for register allocation and assignment are discussed in Section 8.8.
Section 8.10 shows that for certain classes of machines we can construct code
sequences that evaluate expressions using as few registers as possible.

8.1.5 Ewvaluation Order

The order in which computations are performed can affect the efficiency of the
target code. As we shall see, some computation orders require fewer registers
to hold intermediate results than others. However, picking a best order in
the general case is a difficult NP-complete problem. Initially, we shall avoid

512 CHAPTER 8. CODE GENERATION

the problem by generating code for the three-address statements in the order
in which they have been produced by the intermediate code generator. In
Chapter 10, we shall study code scheduling for pipelined machines that can
execute several operations in a single clock cycle.

8.2 The Target Language

Familiarity with the target machine and its instruction set is a prerequisite
for designing a good code generator. Unfortunately, in a general discussion of
code generation it is not possible to describe any target machine in sufficient
detail to generate good code for a complete language on that machine. In
this chapter, we shall use as a target language assembly code for a simple
computer that is representative of many register machines. However, the code-
generation techniques presented in this chapter can be used on many other
classes of machines as well.

8.2.1 A Simple Target Machine Model

Our target computer models a three-address machine with load and store oper-
ations, computation operations, jump operations, and conditional jumps. The
underlying computer is a byte-addressable machine with n general-purpose reg-
isters, RO,R1,... ,Rn — 1. A full-fledged assembly language would have scores
of instructions. To avoid hiding the concepts in a myriad of details, we shall
use a very limited set of instructions and assume that all operands are integers.
Most instructions consists of an operator, followed by a target, followed by a
list of source operands. A label may precede an instruction. We assume the
following kinds of instructions are available:

o Load operations: The instruction LD dst, addr loads the value in location
addrinto location dst. This instruction denotes the assignment dst = addr.
The most common form of this instruction is LD r, & which loads the value
in location z into register 7. An instruction of the form LD ri,r; is a
register-to-register copy in which the contents of register ro are copied
into register ry.

o Store operations: The instruction ST z,r stores the value in register r into
the location z. This instruction denotes the assignment z = r.

o Computation operations of the form OP dst, srcy, srca, where OP is a op-
erator like ADD or SUB, and dst, src;, and srcp are locations, not necessarily
distinct. The effect of this machine instruction is to apply the operation
represented by OP to the values in locations sre; and srez, and place the
result of this operation in location dst. For example, SUB r1,72,73 com-
putes ri = ro — r3. Any value formerly stored in r; is lost, but if r; is
r or 73, the old value is read first. Unary operators that take only one
operand do not have a srcs.

8.2. THE TARGET LANGUAGE 513

e Unconditional jumps: The instruction BR L causes control to branch to
the machine instruction with label L. (BR stands for branch.)

o Conditional jumps of the form Beond r, L, where r is a register, L is a label,
and cond stands for any of the common tests on values in the register r.
For example, BLTZ r, L causes a jump to label L if the value in register r is
less than zero, and allows control to pass to the next machine instruction
if not.

We assume our target machine has a variety of addressing modes:

o In instructions, a location can be a variable name x referring to the mem-
ory location that is reserved for = (that is, the l-value of z).

o A location can also be an indexed address of the form a(r), where a is
a variable and r is a register. The memory location denoted by a(r) is
computed by taking the I-value of a and adding to it the value in register
r. For example, the instruction LD Ri, a(R2) has the effect of setting
R1 = contents(a + contents(R2)), where contents(z) denotes the contents
of the register or memory location represented by x. This addressing
mode is useful for accessing arrays, where a is the base address of the
array (that is, the address of the first element), and 7 holds the number
of bytes past that address we wish to go to reach one of the elements of
array a.

¢ A memory location can be an integer indexed by a register. For ex-
ample, LD R1, 100(R2) has the effect of setting R1 = contents(100 +
contents(R2)), that is, of loading into R1 the value in the memory loca-
tion obtained by adding 100 to the contents of register R2. This feature
is useful for following pointers, as we shall see in the example below.

o We also allow two indirect addressing modes: *r means the memory lo-
cation found in the location represented by the contents of register r and
*100(r) means the memory location found in the location obtained by
adding 100 to the contents of r. For example, LD R1, *100(R2) has the
effect of setting R1 = contents(contents(100 + contents(R2))), that is, of
loading into R1 the value in the memory location stored in the memory
location obtained by adding 100 to the contents of register R2.

e Finally, we allow an immediate constant addressing mode. The constant
is prefixed by #. The instruction LD R1, #100 loads the integer 100 into
register R1, and ADD R1, R1, #100 adds the integer 100 into register R1.

Comments at the end of instructions are preceded by //.

Example 8.2: The three-address statement x = y - z can be implemented by
the machine instructions: '

514 CHAPTER 8. CODE GENERATION

LD Ri, y // Rl =y
LD R2, z // R2 =z
SUB R1, R1, R2 // R1 = R1 - R2
ST x, R1 // x =Rl

We can do better, perhaps. One of the goals of a good code-generation algorithm
is to avoid using all four of these instructions, whenever possible. For example,
y and/or z may have been computed in a register, and if so we can avoid the LD
step(s). Likewise, we might be able to avoid ever storing x if its value is used
within the register set and is not subsequently needed.

Suppose a is an array whose elements are 8-byte values, perhaps real num-
bers. Also assume elements of a are indexed starting at 0. We may execute the
three-address instruction b = a[i] by the machine instructions:

LD R1, i // Rl =1

MUL R1, R1i, 8 // Rl =Rl % 8

LD R2, a(Rl) // R2 = contents(a + contents(R1))
ST b, R2 // b =R2

That is, the second step computes 8i, and the third step places in register R2
the value in the ith element of a — the one found in the location that is &
bytes past the base address of the array a.

Similarly, the assignment into the array a represented by three-address in-
struction a[j] = c is implemented by:

LD Ri1, c // Rl =c

LD R2, j // R2 = j

MUL R2, R2, 8 // R2 = R2 * 8

ST a(R2), R1 // contents(a + contents(R2)) = Rl

To implement a simple pointer indirection, such as the three-address state-
ment x = *p, we can use machine instructions like:

LD Ri, p // Rl =7p
LD R2, 0(R1) // R2 = contents(0 + contents(R1))
ST x, R2 // x = R2

The assignment through a pointer *p = y is similarly implemented in machine
code by:

LD Ri, p // Rt =p
LD R2, y // R2 =y
ST O0(R1), R2 // contents(0 + contents(R1)) = R2

Finally, consider a conditional-jump three-address instruction like

if x < y goto L

8.2. THE TARGET LANGUAGE 515

The machine-code equivalent would be something like:

ID Ri1, x // Rl =x

LD R2,y // R2 =y

SUB R1, R1, R2 // Rl = Rl - R2

BLTZ R1, M // if R1 < 0 jump to M

Here, M is the label that represents the first machine instruction generated from
the three-address instruction that has label L. As for any three-address instruc-
tion, we hope that we can save some of these machine instructions because the
needed operands are already in registers or because the result need never be
stored. O

8.2.2 Program and Instruction Costs

We often associate a cost with compiling and running a program. Depending
on what aspect of a program we are interested in optimizing, some common
cost measures are the length of compilation time and the size, running time
and power consumption of the target program.

Determining the actual cost of compiling and running a program is a com-
plex problem. Finding an optimal target program for a given source program is
an undecidable problem in general, and many of the subproblems involved are
NP-hard. As we have indicated, in code generation we must often be content
with heuristic techniques that produce good but not necessarily optimal target
programs.

For the remainder of this chapter, we shall assume each target-language
instruction has an associated cost. For simplicity, we take the cost of an in-
struction to be one plus the costs associated with the addressing modes of the
operands. This cost corresponds to the length in words of the instruction.
Addressing modes involving registers have zero additional cost, while those in-
volving a memory location or constant in them have an additional cost of one,
because such operands have to be stored in the words following the instruction.
Some examples:

o The instruction LD RO, R1 copies the contents of register R1 into register
RO. This instruction has a cost of one because no additional memory
words are required.

e The instruction LD RO, M loads the contents of memory location M into
register RO. The cost is two since the address of memory location M is in
the word following the instruction. '

e The instruction LD R1, *100(R2) loads into register R1 the value given
by contents(contents(100 + contents(R2))). The cost is three because the
constant 100 is stored in the word following the instruction.

516 CHAPTER 8. CODE GENERATION

In this chapter we assume the cost of a target-language program on a given
input is the sum of costs of the individual instructions executed when the pro-
gram is run on that input. Good code-generation algorithms seek to minimize
the sum of the costs of the instructions executed by the generated target pro-
gram on typical inputs. We shall see that in some situations we can actually
generate optimal code for expressions on certain classes of register machines.

8.2.3 Exercises for Section 8.2

Exercise 8.2.1: Generate code for the following three-address statements as-
suming all variables are stored in memory locations.

a) x =1
b) x = a
c)x=a+1
d)x=a+b

e) The two statements

H

b *x c
a+ x

X
y

Exercise 8.2.2: Generate code for the following three-address statements as-
suming a and b are arrays whose elements are 4-byte values.

a) The four-statement sequence

[

x = ali]
y = blj]
alil =y
blj]l = x

b) The three-statement sequence

x = al[il
y = blil]
z=x %y

c) The three-statement sequence

x = af[i]
y = blxl
ali] =y

8.2. THE TARGET LANGUAGE 517

Exercise 8.2.3: Generate code for the following three-address sequence as-
suming that p and q are in memory locations:

¥y = *q
q=q+ 4
*p =5
p=p+4

Exercise 8.2.4: Generate code for the following sequence assuming that x, y,
and z are in memory locations:

if x < y goto L1

z =0
goto L2
Li: z =1

Exercise 8.2.5: Generate code for the following sequence assuming hat n is
in a memory location:

s =0
i=0

Ll1: if i > n goto L2
s=s+1i
i=1i+1
goto L1

L2:

Exercise 8.2.6: Determine the costs of the following instruction sequences:

a) LD RO, y
LD R1, =z
ADD RO, RO, R1
ST x, RO

b) LD RO, i

MUL RO, RO, 8
LD R1, a(RO)

ST b, Rl
c) LD RO, c
LD R1, i

MUL R1, R1, 8
ST a(R1), RO

d) LD RO, p
LD R1, O(RO)
ST x, R1

518

CHAPTER 8. CODE GENERATION

LD RO, p
LD R1, x
ST 0(RO), R1

LD RO, x

LD R1i, y

SUB RO, RO, R1
BLTZ *R3, RO

8.3 Addresses in the Target Code

In this section, we show how names in the IR can be converted into addresses
in the target code by looking at code generation for simple procedure calls and
returns using static and stack allocation. In Section 7.1, we described how each
executing program runs in its own logical address space that was partitioned
into four code and data areas:

1.

A statically determined area Code that holds the executable target code.
The size of the target code can be determined at compile time.

A statically determined data area Static for holding global constants and
other data generated by the compiler. The size of the global constants
and compiler data can also be determined at compile time.

A dynamically managed area Heap for holding data objects that are allo-
cated and freed during program execution. The size of the Heap cannot
be determined at compile time.

A dynamically managed area Stack for holding activation records as they
are created and destroyed during procedure calls and returns. Like the
Heap, the size of the Stack cannot be determined at compile time.

8.3.1 Static Allocation

To illustrate code generation for simplified procedure calls and returns, we shall
focus on the following three-address statements:

e call callee

e return

e halt

e action, which is a placeholder for other three-address statements.

The size and layout of activation records are determined by the code gener-
ator via the information about names stored in the symbol table. We shall first
illustrate how to store the return address in an activation record on a procedure

8.3. ADDRESSES IN THE TARGET CODE 519

call and how to return control to it after the procedure call. For convenience,
we assume the first location in the activation holds the return address.

Let us first consider the code needed to implement the simplest case, static
allocation. Here, a call callee statement in the intermediate code can be im-
plemented by a sequence of two target-machine instructions:

ST callee.staticArea, #here+ 20
BR callee.codeArea

The ST instruction saves the return address at the beginning of the activation
record for callee, and the BR transfers control to the target code for the called
procedure callee. The attribute before callee.staticArea is a constant that gives
the address of the beginning of the activation record for callee, and the attribute
callee.codeArea is a constant referring to the address of the first instruction of
the called procedure callee in the Code area of the run-time memory.

The operand #here+ 20 in the ST instruction is the literal return address; it
is the address of the instruction following the BR instruction. We assume that
#here is the address of the current instruction and that the three constants plus
the two instructions in the calling sequence have a length of 5 words or 20 bytes.

The code for a procedure ends with a return to the calling procediire, except
that the first procedure has no caller, so its final instruction is HALT, which
returns control to the operating system. A return callee statement can be
implemented by a simple jump instruction

BR *callee.staticArea

which transfers control to the address saved at the beginning of the activation
record for callee.

Example 8.3: Suppose we have the following three-address code:

// code for c
actiom
call p
actions
halt

// code for p
actiong
return

Figure 8.4 shows the target program for this three-address code. We use the
pseudoinstruction ACTION to represent the sequence of machine instructions to
execute the statement action, which represents three-address code that is not
relevant for this discussion. We arbitrarily start the code for procedure ¢ at
address 100 and for procedure p at address 200. We that assume each ACTION
instruction takes 20 bytes. We further assume that the activation records for
these procedures are statically allocated starting at locations 300 and 364, re-
spectively.

The instructions starting at address 100 implement the statements

520 : CHAPTER 8. CODE GENERATION

action;; call p; actiong; halt

of the first procedure c. Execution therefore starts with the instruction ACTION;
at address 100. The ST instruction at address 120 saves the return address 140
in the machine-status field, which is the first word in the activation record of p.
The BR instruction at address 132 transfers control the first instruction in the
target code of the called procedure p.

// code for ¢

100: ACTION; // code for action;

120: ST 364, #140 // save return address 140 in location 364
132: BR 200 // call p

140: ACTION,

160: HALT // return to operating system

// code for p
200: ACTIONg
220: BR *364 // return to address saved in location 364

// 300-363 hold activation record for ¢

300: // return address
304 // local data for ¢
// 364-451 hold activation record for p
364: // return address
368: // local data for p

Figure 8.4: Target code for static allocation

After executing ACTIONs, the jump instruction at location 220 is executed.
Since location 140 was saved at address 364 by the call sequence above, %364
represents 140 when the BR statement at address 220 is executed. Therefore,
when procedure p terminates, control returns to address 140 and execution of

procedure c resumes. [

8.3.2 Stack Allocation

Static allocation can become stack allocation by using relative addresses for
storage in activation records. In stack allocation, however, the position of an
activation record for a procedure is not known until run time. This position is
usually stored in a register, so words in the activation record can be accessed as
offsets from the value in this register. The indexed address mode of our target
machine is convenient for this purpose.

Relative addresses in an activation record can be taken as offsets from any
known position in the activation record, as we saw in Chapter 7. For conve-

